Рефераты по БЖД

Электромагнитный импульс ядерного взрыва и защита от него радиоэлектронных средств

На конечной стадии, занимающей период времени после взрыва от 1 с до нескольких минут, ЭМИ генерируется магнитогидродинамическим эффек­том, порождаемым возмущениями магнитного поля Земли токопроводящим ог­ненным шаром взрыва. Интенсивность ЭМИ на этой стадии весьма мала и составляет несколько десятков вольт на километр.

Наибольшую опасность для радиоэлектронных средств представляет первая стадия генерирования ЭМИ, на которой в соответствии с законом электромагнитной индукции из-за чрезвычайно быстрого нарастания ампли­туды импульса (максимум достигается на 3 - 5 нс после взрыва) наведен­ное напряжение может достигать десятков киловольт на метр на уровне земной поверхности, плавно снижаясь по мере удаления от эпицентра взрыва.

Амплитуда напряжения, наводимого ЭМИ в проводниках, пропорцио­нальна длине проводника, находящегося в его поле, и зависит от его ориентации относительно вектора напряженности электрического поля. Так, напряженность поля ЭМИ в высоковольтных линиях электропередачи может достигать 50 кВ/м, что приведет к появлению в них токов силой до 12 тыс.ампер.

ЭМИ генерируются и при других видах ядерных взрывов - воздушном и наземном. Теоретически установлено, что в этих случаях его интенсив­ность зависит от степени ассимметричности пространственных параметров взрыва. Поэтому воздушный взрыв с точки зрения генерации ЭМИ наименее эффективен. ЭМИ наземного взрыва будет иметь высокую интенсивность, однако она быстро уменьшается по мере удаления от эпицентра.

Использование имитаторов ЭМИ для набора экспериментальныхm данных.

Поскольку сбор экспериментальных данных при проведении подземных ядерных испытаний технически весьма сложен и дорогостоящ, то решение набора данных достигается методами и средствами физического моделиро­вания.

Среди капиталистических стран передовые позиции в разработке и практическом использовании имитаторов ЭМИ ядерного взрыва занимают США. Подобные имитаторы представляют собой электрогенераторы со спе­циальными излучателями, создающими электромагнитное поле с параметрами близкими к тем, которые характерны для реального ЭМИ. В зону действия излучателя помещаются испытываемый объект и приборы, регистрирующие интенсивность поля, его частотный спектр и длительность воздействия.

Один из таких имитаторов, развернутый на авиабазе ВВС США Кирт-

ленд, предназначен для моделирования условий воздействия ЭМИ на само­лет и его аппаратуру. Он может использоваться для испытаний таких крупных летательных аппаратов, как бомбардировщик В-52 или гражданский авиалайнер Боинг-747.

В настоящее время создано и действует большое количество имитато-

ров ЭМИ для испытаний авиационной, космической, корабельной и наземной техники. Однако они не в полной мере воссоздают реальные условия воз­действия ЭМИ ядерного взрыва вследствие ограничений, накладываемых ха­рактеристиками излучателей, генераторов и источников электропитания на частотный спектр излучения, его мощность и скорость нарастания импуль­са. Вместе с тем, и при этих ограничениях удается получить достаточно полные и надежные данные о появлении неисправностей в полупроводнико­вых приборах, сбоя в их функционировании и т.п., а также об эффектив­ности действия различных защитных устройств. Кроме того, такие испыта­ния позволили дать количественную оценку опасности различных путей воздействия ЭМИ на радиоэлектронную технику.

Теория электромагнитного поля показывает, что такими путями для наземной техники являются прежде всего различные антенные устройства и кабельные вводы системы электропитания, а для авиационной и космичес­кой техники - антенны, а также токи, наводимые в обшивке, и излучения, проникающие через остекление кабин и лючки из нетокопроводящих матери­алов. Токи, наводимые ЭМИ в наземных и заглубленных кабелях электропи­тания протяженностью в сотни и тысячи километров, могут достигать ты­сяч ампер, а напряжение в разомкнутых цепях таких кабелей - миллион вольт. В антенных вводах, длина которых не превышает десятков метров, наводимые ЭМИ токи могут иметь силу в несколько сотен ампер. ЭМИ, про­никающий непосредственно через элементы сооружений из диэлектрических материалов (неэкранированные стены, окна, двери и т.п.), может наводи­ть во внутренней электропроводке токи силой в десятки ампер.

Поскольку слаботочные цепи и радиоэлектронные приборы нормально

действуют при напряжениях в несколько вольт и токах силой до несколь­ких десятков миллиампер, то для их абсолютно надежной защиты от ЭМИ требуется обеспечить снижение величины токов и напряжений в кабелях, до шести порядков.

Возможные пути решения задачи защиты ОТ ЭМИ.

Идеальной защитой от ЭМИ явилось бы полное укрытие помещения, в котором размещена радиоэлектронная аппаратура, металлическим экраном. Вместе с тем ясно, что практически обеспечить такую защиту в ряде слу­чаев невозможно, т.к. для работы аппаратуры часто требуется обеспечить ее электрическую связь с внешними устройствами. Поэтому используются менее надежные средства защиты, такие, как токопроводящие сетки или пленочные покрытия для окон, сотовые металлические конструкции для воздухозаборников и вентиляционных отверстий и контактные пружинные прокладки, размещаемые по периметру дверей и люков.

Более сложной технической проблемой считается защита от проникно­вения ЭМИ в аппаратуру через различные кабельные вводы. Радикальным решением данной проблемы мог бы стать переход от электрических сетей связи к практически не подверженным воздействию ЭМИ волоконно-оптичес­ким. Однако замена полупроводниковых приборов во всем спектре выполня­емых ими функций электронно-оптическими устройствами возможно только в отдаленном будущем. Поэтому в настоящее время в качестве средств защи­ты кабельных вводов наиболее широко используются фильтры, в том числе волоконные, а также искровые разрядники,металлоокисные варисторы и вы­сокоскоростные зенеровские диоды.

Все эти средства имеют как преимущества, так и недостатки. Так, емкостно-индуктивные фильтры достаточно эффективны для защиты от ЭМИ малой интенсивности, а волоконные фильтры защищают в относительно уз­ком диапазоне сверхвысоких частот.Искровые разрядники обладают значи­тельной инерционностью и в основном пригодны для защиты от перегрузок, возникающих под воздействием напряжений и токов, наводимых в обшивке самолета, кожухе аппаратуры и оплетке кабеля.

Металлоокисные варисторы, представляют собой полупроводниковые приборы, резко повышающие свою проводимость при высоком напряжении. Однако, при применении этих приборов в качестве средств защиты от ЭМИ следует учитывать их недостаточно высокое быстродействие и ухудшение

характеристик при неоднократном воздействии нагрузок. Эти недостатки отсутствуют у высокоскоростных зенеровских диодов, действие которых основано на резком лавинообразном изменении сопротивления от относи­тельно высокого значения практически до нуля при превышении приложен­ного к ним напряжения определенной пороговой величины. Кроме того в отличии от варисторов характеристики зенеровских диодов после многок­ратных воздействий высоких напряжений и переключений режимов не ухуд­шаются.

Перейти на страницу номер:
 1  2  3 


Другие рефераты:

© 2010-2024 рефераты по безопасности жизнедеятельности