Изменяется тепловой режим пожара за счет увеличения теплоотдачи к поверхности жидкости, стенки резервуара, контактируя с пламенем, нагреваются до более высокой температуры
За счет теплового излучения факела пламени, а также конвективного переноса тепла раскаленными газами часто происходит воспламенение паров нефтепродуктов на соседних резервуарах, выходящих через дыхательную арматуру, замерные устройства и т.п.
Температура пламени зависит от вида нефтепродукта и практически не зависит от размеров факела и колеблется от 1000 до 1300°С
Линейная скорость выгорания различных нефтепродуктов в зависимости от их физико-химических свойств находится в пределах от 6 до 30 см/ч она практически не зависит от размеров резервуара или от площади горения, если эта площадь превышает 5 м2
Процесс горения нефтепродуктов в резервуарах металлических наземных и железобетонных подземных при полностью разрушенной крыше практически не отличается. Например, линейная скорость выгорания ил для нефти составляет 15 см/ч для обоих видов резервуаров, а скорость прогрева оп в металлических резервуарах для нефти составляет 24-36 см/ч и в железобетонных 24-30 см/ч
Накопление тепла в поверхностном слое нефтепродукта в значительной степени влияет на процесс тушения. Высокая температура разрушает пену, увеличивает расход огнетушащих веществ и время тушения
На поверхности жидкости температура близка к температуре кипения, но у нефти температура поверхности медленно возрастает по мере выгорания легких фракций. Для большинства нефтепродуктов температура поверхности жидкости составляет более 100°С.
Наличие прогретого слоя наблюдается при длительном горении сырых нефтей и мазутов.
Необходимо отметить, что бензин быстрее прогревается, чем нефть и мазут, но температура прогретого слоя ниже температуры кипения воды или близка к ней (табл 4), поэтому выброс маловероятен.
Таблица 4
Параметры пожаров нефтепродуктов
Наименование горючей жидкости |
Скорость выгорания (м/ч) |
Скорость прогрева (м/ч) |
Бензин |
0,3 |
0,1 |
Керосин |
0,25 |
0,1 |
Газовый конденсат |
0,3 |
0,3 |
Дизельное топливо из газового конденсата |
0,25 |
0,15 |
Смесь нефти и газового конденсата |
0,2 |
0,4 |
Дизельное топливо |
0,2 |
0,08 |
Нефть |
0,15 |
0,4 |
Мазут |
0,1 |
0,3 |
Основными явлениями, сопровождающими пожар в резервуарных парках, являются вскипание и выброс.
По характеру прогрева у поверхности все ЛВЖ-ГЖ можно разделить на две группы. Первая группа, у которой температура в слое почти не меняется (спирты, ацетон бензол, керосин, дизельное топливо и др.), а на поверхности горения устанавливается температура, близкая к температуре кипения. Вторая группа (сырая нефть, бензин, мазуты и др.) — при длительном горении у поверхности образуется кипящий слой.
Бывают случаи, когда нет слоя воды, но она имеется в виде эмульсии в самой горючей жидкости. При уменьшении вязкости верхнего слоя нефти капли воды опускаются вглубь и накапливаются там, где вязкость нефти еще велика. Одновременно капли воды нагреваются и закипают. Пары воды вспенивают нефть, которая переливается через борт и происходит вскипание (т. е. вскипание воды, содержащейся в нефти). Вскипание возникает раньше, чем выброс. Сейчас нет точных данных, позволяющих РТП определить время, по истечении которого наступит вскипание, (рис. 2).Опытами установлено, что если высота свободного борта превышает толщину прогретого слоя больше чем вдвое, жидкость не переливается через борт при условии содержания воды в нефти до 1%, тогда вскипание происходит через 45-60 мин. Вскипание увеличивает температуру пламени до 1500°С, высота пламени увеличивается в 2-3 раза, тепловой поток возрастает в несколько раз, за счет полного сгорания.
Выброс можно объяснить следующим образом, температура прогретого слоя нефти может достигать 300°С. Этот слой, соприкасаясь с водой, нагревает ее до температуры значительно большей, чем температура кипения. При этом происходит бурное вскипание воды с выделением большого количества пара, который выбрасывает находящуюся над водой нефть за пределы резервуара.
Итак, анализ причин выброса показывает, что он может произойти во время пожара в резервуаре, где под слоем жидкости находится вода, т. е. в зависимости от условий хранения, где образуется прогретый слой жидкости; где температура прогретого слоя выше температуры кипения воды.
Время выброса (т. е. время от начала пожара до выброса) можно определить, если известен уровень жидкости в резервуаре Н, толщина слоя воды h, а также линейная скорость выгорания vл и скорость прогрева vл, тогда получим время, ч, по формуле: tв = (Н – h)/(vл – vп) (10.6)
Как вывод можно отметить, что вскипание и выброс на пожарах в резервуарных парках представляют серьезную опасность для личного состава и техники, увеличивают размеры пожара, изменяют характер горения, вызывают необходимость перегруппировки сил и средств, введения резерва, изменения плана тушения и т.п.
Основными мерами борьбы с вскипанием и выбросом могут быть:
• ликвидация пожара до вскипания или выброса,
• дренирование (откачка) слоя воды из резервуара.
Для выбора эффективных боевых действий РТП должен иметь данные по параметрам пожара и явлениям, сопровождающим пожар.
Вопросы охраны труда
В процессе тушения пожара необходимо строго выполнять требования техники безопасности. При горении нефтепродуктов в наземных резервуарах, особенно жидкостей, способных к выбросу, расстановку необходимо производить с учетом направления возможного розлива жидкости и положения зоны задымления. Поэтому не следует ставить автонасосы на реки, ручьи, канавы по течению; при наличии угрозы выброса нефтепродукта или взрыва резервуара со сжиженным газом необходимо удалить людей и технику на расстояние 150 м с подветренной стороны от горящего резервуара и на 100 м с наветренной стороны, при этом водяные стволы закрепляют на позициях и работу их не прекращают. При тушении пожаров в резервуарных парках весь личный состав должен быть оповещен об установленном сигнале опасности и направлениях выхода из опасной зоны. В процессе подготовки к пенной атаке в обваловании на нем должен находиться минимум людей, главным образом ствольщиков.