Введение
Ни одна правильно реализованная система электроснабжения не обходится без всем известного и часто используемого понятия – заземления. Постоянное обращение с электроприборами на производстве подвергает работника постоянному риску поражения электрическим током. Основная функция заземления, это обеспечение электробезопасности электрических приборов и электроустановок от неисправности изоляционного покрытия токоведущих проводников, а так же безопасность работников от поражения электрическим током при использовании этих приборов и установок. Для того чтобы максимально обезопасить человека, производители электрооборудования оснащают его в корпусах повышенного класса изоляции, а также, при наличии открытых проводящих частей корпуса, обязателен заземляющий контакт на вилке питания или специальный зажим заземления. Для качественного заземления электрооборудования и открытых металлических элементов (труб горячего и холодного водоснабжения, коробов и т.п.) должно быть надежно соединение его с контуром заземления электроустановки. При хорошем состоянии заземлителей, заземляющих проводников и контактов работник надежно защищен при возможных появлениях опасного потенциала на корпусе электрооборудования, а при наличии в цепи питания УЗО (Устройства Защитного Отключения) аварийный участок мгновенно отключится, не давая возможности электрическому току время для поражения человека. Как и УЗО, заземление должно подвергаться периодической проверке и замерам сопротивления цепи между заземлителями и заземленными элементами электрооборудования. Периодический контроль состояния заземления, как и всего электроснабжения в целом, обеспечит надежную работоспособность и безопасность эксплуатации электрооборудования. Это станет служить вам гарантией защищенности технологического процесса, электрооборудования и работников. Однако на производстве не всегда учитывается возможность поражения электрическим током природного происхождения, таким как удар молнии. Хорошо заземленные здания при попадании молнии останутся неповрежденными, но если вы не позаботились о заземлении, то результаты такой беспечности могут иметь вероятность обойтись слишком дорого: в лучшем случае необходимо будет выкинуть всю технику, в худшем - может случиться пожар. А если это произойдет ночью, то сомнения насчет целесообразности заземления отпадут сами собой.
Целю данной работы является рассмотрение всех возможных видов защиты от случайного поражения электрическим током, как техногенного, так и природного характера.
Зануление
Защитное зануление
В сетях с глухозаземленной нейтралью замыкание одной из фаз на землю или на проводник, соединенный с глухозаземленной нейтралью, является однофазным коротким замыканием. Если замыкание произошло на корпус электрооборудования, не связанного с землей, то человек, стоящий на земле и прикоснувшийся к этому электрооборудованию, окажется под полным фазовым напряжением и через него пройдет ток однофазного замыкания. Для предупреждения возможности поражения электрическим током при замыкании на корпус поврежденный участок должен быть отключен от сети в возможно короткий срок, чтобы ограничить до минимума время, в течение которого это оборудование будет представлять опасность для персонала. В этих целях в сетях с глухозаземленной нейтралью применяют защитное зануление. Защитным занулением называется преднамеренное металлическое соединение с глухозаземленной нулевой точкой (нейтралью) трансформатора в сетях переменного тока и с глухозаземленной средней точкой источника электроснабжения в трехпроводных сетях постоянного тока частей электроустановок, нормально не находящихся под напряжением, но которые могут случайно оказаться под таковым. Соединение это выполняют проводником, который называется зануляющим, или нулевым защитным проводником. При замыкании одной из фаз на корпусе электрооборудования, имеющего соединения нулевым защитным проводником с глухозаземленной нейтралью трансформатора в сетях переменного тока или с глухозаземленной средней точкой в сетях постоянного тока, возникает однофазное короткое замыкание, которое вызывает срабатывание соответствующего защитного аппарата и отключение поврежденного участка. Защитное зануление применяют в сетях переменного тока с глухозаземленной нейтралью или с глухозаземленным нулевым проводом в трехпроводных сетях постоянного тока для автоматического отключения поврежденного участка сети в минимально возможное короткое время. В любом случае, ПУЭ регламентируют время автоматического отключения поврежденной линии. Для номинального фазного напряжения сети 380/220 В оно не должно превышать 0,4 с. Зануление осуществляется специально предназначенными для этого проводниками. При однофазной проводке — это, например, третья жила провода или кабеля. Для того, чтобы отключение аппарата защиты произошло в предусмотренное правилами время, сопротивление петли «фаза-ноль» должно быть небольшим, что, накладывает на все соединения и монтаж сети жесткие требования качества, иначе зануление может оказаться неэффективным. Помимо быстрого отключения неисправной линии от электроснабжения, зануление обеспечивает низкое напряжение прикосновения на корпусе электроприбора. Это исключает вероятность поражения током человека. Поскольку нейтраль заземлена, зануление можно рассматривать как специфическую разновидность заземления. Различают зануление систем TN-C, TN-C-S и TN-S.
Система зануления TN-C
Простая система зануления, в которой нулевой проводник N и нулевой защитный PE совмещены на всей своей длине. Совместный проводник обозначается аббревиатурой PEN. Недостаток заключается в высоких требования к системам уравнивания потенциалов и сечению PEN-проводника. Применяется для электроснабжения трехфазных нагрузок, например асинхронных двигателей. Применение данной системы в однофазных групповых и распределительных сетях запрещено П.1.7.132.: «Не допускается совмещение функций нулевого защитного и нулевого рабочего проводников в цепях однофазного и постоянного тока. В качестве нулевого защитного проводника в таких цепях должен быть предусмотрен отдельный третий проводник». [1]
Система зануления TN-C-S
Усовершенствованная система зануления, предназначенная для обеспечения электробезопасности однофазных сетей электроустановок. Она состоит из совмещённого PEN-проводника, который соединён с глухозаземленной нейтралью питающего электроустановку трансформатора. В точке, где трёхфазная линия разветвляется на однофазные потребители PEN-проводник разделяется на PE- и N-проводники, непосредственно подходящие к однофазным потребителям.
Система зануления TN-S
Наиболее совершенная, дорогая и безопасная система зануления. В этой системе нулевой защитный и нулевой проводники разделены на всей своей длине, что исключает вероятность ее выхода из строя при аварии на линии или ошибке в монтаже электропроводки.
Ошибки в реализации зануления
Иногда ошибочно считают, что заземление на отдельный контур, не связанный с нулевым проводом сети, лучше, потому что при этом нет сопротивления длинного PEN-проводника от электроустановки потребителя до заземлителя КТП. Такое мнение ошибочно, потому что сопротивление заземления, гораздо больше сопротивления даже длинного провода. И при замыкании фазы на заземленный таким образом корпус электроприбора ток замыкания из-за большого сопротивления местного заземления может оказаться недостаточным для срабатывания АВ (автоматического выключателя) или предохранителя, защищающего эту линию. В таком случае корпус прибора будет находиться под опасным потенциалом. Кроме того, даже если применить АВ небольшого номинала, срабатывающий от тока замыкания на землю, все равно обеспечить требуемое ПУЭ время автоматического отключения поврежденной линии практически нереально. Поэтому раньше, до начала массового применения УЗО, заземление корпусов электроприемников без их зануления (то есть заземление по системе ТТ) вообще не допускалось п. 1.7.39.: «В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается» [2]. Распространённым заблуждением является утверждение, что согласно новой редакции ПУЭ [3] П. 1.7.59 заземление корпусов электроприемников без их зануления допускается, но только при обязательном применении УЗО. Пункт 1.7.59 дословно гласит: «Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система ТТ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие: Ra * Iа ≤ 50 В, где Iа — ток срабатывания защитного устройства; Ra — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удалённого электроприемника» [3]. В рассматриваемом пункте ПУЭ [3] речь идет о системе ТТ. Указывается, что в системе ТТ электробезопасность при косвенном прикосновении обеспечивается используя УЗО. Система сети определяется состоянием нейтрали источника питания (п. 1.7.3) [3], в большинстве случаев трансформатора подстанции, а также способами подключения открытых проводящих частей оборудования к элементам защиты, которые четко определены для каждой системы — глухозаземлённой нейтрали трансформатора или заземляющему устройству. В настоящее время, для питания подавляющего количества электроустановок (дачные участки, жилые и производственные здания и т. д.), используется система TN, где открытые части электроустановки присоединены к глухозаземлённой нейтрали источника питания. Таким образом, указания пункта 1.7.59 [3] относятся к другой, не получившей широкого распространения, схеме сети и не могут быть использованы для обеспечения электробезопасности в сетях, выполненных по схеме TN.