Защита от ядерного излучения.
При работе с любыми источниками радиоактивного излучения (ядерные реакторы, изотопы, зараженная местность, облучающие предметы и т. п. ) должны быть приняты меры радиационной защиты людей.
Наиболее простой способ защиты – это удаление работающих от источника излучения на достаточно большое расстояние ( так как интенсивность любого ионизирующего излучения убывает с увеличением расстояния от его источника). С этой целью используют различные источники дистанционного управления, манипуляторы типа “механические руки” и т. п.
Если же удаление людей от источника радиации на дальнее расстояние не возможно, то для защиты от излучения используют различные преграды, изготовленные из материалов, поглощающих излучение. Толщина этих преград зависит от проникающей способности данного вида излучения и его интенсивности.
Наиболее простой является защита от альфа – частиц, так как они имеют малую длину пробега ( лист бумаги способен полностью поглотить их ). Однако проникновение альфа – частиц внутрь организма ( например, с пищей ) является очень опасным. Пробег бета – частиц зависит от их энергии. Например, при энергии порядка 3 МэВ бета – частицы пролетают в воздухе до 3 метров. Однако они не проходят через слой пластмассы толщиной более 3 мм.
Наиболее сложной является защита от гамма – излучения и нейтронов, обладающих большой проникающей способностью в вещества. Лучшим поглотителем гамма – частиц является свинец. Поэтому для защиты от гамма – излучения радиоактивные препараты помещают в свинцовые контейнеры. Самыми лучшими поглотителями медленных ( тепловых ) нейтронов является бор и кадмий. Изготовленные из этих элементов защитные преграды обычно окружают так же слоем свинца для защиты от вторичного излучения. Быстрые нейтроны обычно сначала замедляют с помощью графита.
Для эффективной защиты от мощных и крупных источников радиации ( например, ядерных реакторов ) кроме перечисленных способов защиты от ядерного излучения, используют так же бетонные стены многометровой толщины.
Необходимо отметить, что человек не только защищается от радиоактивных излучений, но и использует их. Не касаясь вопроса о разнообразных применениях радиоактивного излучения в технике, заметим, что в медицине радиоактивные излучения ( главным образом гамма – излучение ) используют для подавления злокачественных опухолей.
Воздействие радиоактивных заражающих веществ на людей, с/х животных и растительность
Главным образом источниками ионизирующего излучения являются либо отходы ядерных реакторов либо радиоактивное облако, после ядерного взрыва, из которого выпадают радиоактивные осадки. Эти осадки является смесью множества изотопов различных химических элементов, которые образовываются после взрыва ядерного заряда, при делении ядра и распада изотопов.
При делении ядер урана-235 и плутония-239 образуется около 200 изотопов 36 различных элементов средней части таблицы Менделеева. Из них наиболее опасными являются изотопы цезия, йода, стронция.
Самая главная опасность, которую несет в себе ядерная радиация, состоит в том, что она может проникать сквозь стены зданий, сооружений, не принося им при этом никакого вреда, однако все живые организмы, которые находятся в зданиях и сооружениях могут быть подвержены действию радиации. Они могут получить большую дозу радиации, измеряемую в рентгенах.
Любая местность подверженная действию радиоактивного излучения может характеризоваться уровнем радиации на местности, измеряемой в рентгенах в час (Р/ч). уровнем радиации можно назвать мощные дозы излучения, которые были измерены на высоте одного метра от уровня земли, в очаге крупного радиоактивного излучения.
С помощью уровня радиации можно узнать какую дозу радиации может получить живой организм в единицу времени в зараженной зоне. В условиях военного времени местность считается зараженной при уровне радиации 0,5 Р/ч и выше.
Дозу радиоактивного заражения любого вещества в зоне зарожения можно измерить в миллирентгенах в час (мР/ч) или микрорентгенах в час (мкР/ч).
В следствии распада радионуклидов, доза радиоактивного заражения на местности постоянно уменьшается.
В течении какого-то промежутка времени, кратного 7, уровень радиации снижается в 10 раз. Так, если через 1 ч после взрыва уровень принять за исходный, то через 7 ч он снизится в 10 раз, через 49 ч (около 2 суток) в 100 раз, а через 14 суток в 1000 раз по сравнению с первоначальным.
Из всего вышесказанного можно сделать вывод, что чем позднее были сделаны замеры уровня радиации, тем она будет ниже. Чтобы сравнить заражения различных источников, измерения нужно производить в одно и тоже время или с учетом прошедшего времени привести ее к уровню, которого она достигала ранее.
Все находящиеся в зоне заражения люди, животные, растения подвергаются как внешнему гамма-облучению, так и поверхностному заражению осевшими на одежду, кожу, шерстный покров, стебли, листья радиоактивными веществами, поражающее действие которых в основном обусловлено наличием в них бета-излучателей. Кроме того, вместе с зараженным воздухом и пищей они попадают внутрь организма человека и животных, вызывая внутреннее заражение.
Особенности заражения местности при авариях на АЭС.
Опасным источником заражения могут быть атомные электростанции, на которых произошли аварии. Аварийные ситуации создаются при нарушениях в технологических системах очистки, когда происходит выброс продуктов ядерного деления (ПЯД) с газами или сброс с водой в водоемы и реки, а также при разрушении активной зоны реактора—тепловом взрыве, приводящем к поступлению во внешнюю среду большого количества ПЯД. Так, в результате аварии на Чернобыльской АЭС радиоактивные вещества распространились, вызвав заражение ряда областей Украины, Белоруссии и нескольких районов Брянской области. Повышенный гамма-фон был зарегистрирован в Скандинавских и других странах Европы.
Заражение местности имело некоторые особенности по сравнению с заражением после ядерного взрыва. Так. снижение уровня радиации проходило медленнее, чем на следе ядерного взрыва. Это объясняется, с одной стороны, многократно повторявшимися выбросами из разрушенного реактора, с другой— иным изотопным составом следа Чернобыльской АЭС (в частности, меньшим числом изотопов вообще и короткоживущих в особенности, наличие которых и обусловливает быстрый спад уровня радиации по закономерности, указанной на с. 34. Второй особенностью следа аварийного выброса АЭС явилась неравномерность выпадений ПЯД на местности, их пятнистый (мозаичный) характер. Наибольшее количество радиоактивных изотопов осело в низменных и пойменных местах, порой удаленных на десятки и сотни километров от АЭС. Возвышенности, бедные растительностью, не имевшие кустарников и лесов, были более “чистыми”. Образованию пятен способствовала сравнительно небольшая высота выброса, преобладание в нем мелкодисперсного аэрозоля, более подверженного воздействию вертикальных перемещений воздушных потоков (конвенции, инверсии), частое изменение направления и скорости ветра. Третьей особенностью было то, что распределение и перенос РВ происходили в атмосфере в основном в приземном слое, тогда как при ядерном взрыве часть радиоактивных веществ попадает в тропосферу и стратосферу и выпадает в виде глобальных осадков.