Основные источники адиоэкологической опасности
Источники радиации разделяют на естественные и искусственные (техногенные), созданные человеком. Ниже описываются основные источники ионизирующего, излучения (ИИЙ), а также тот вклад, который они вносят, в среднем, в облучение населения.
Космическая радиация и космические радионуклиды. Космическое пространство пронизывается ионизирующим излучением различного происхождения и энергии. Первичная космическая радиация солнечного или галактического происхождения состоит, в основном, из протонов с энергией, изменяющейся в очень широком диапазоне. Вторичная космическая радиация включает продукты взаимодействия первичной радиации и атмосферы Земли. Глобальная годовая эффективная доза от космической радиации на одного человека составляет около 0,38 мЗв (38 мбэр), однако сильно зависит от абсолютной высоты (например, около 0,27мЗв (27 мбэр) на уровне моря (г. Мехико) и около 2 мЗв (200 мбэр) на высоте 3,9 км над уровнем моря (Ла-Пас, Боливия)). Космическое излучение в результате взаимодействия с элементами в атмосфере образует разнообразные радионуклиды. Наиболее значимым является углерод-74, который, попадая в организм, приводит к образованию годовой индивидуальной эффективной дозы около 0,012мЗв (1,2мбэр) [1].
Земная радиация. Только долгоживущие радионуклиды с периодом полураспада, соизмеримым с возрастом Земли, до сих пор существуют в ее веществе. Воздействие земной радиации может осуществляться тремя путями: прямое воздействие внешнего облучения, внутреннее облучение при потреблении пищи и внутреннее облучение при вдыхании воздуха. Годовая индивидуальная эффективная доза от внешнего облучения составляет около 0,46мЗв (46мбэр), хотя эта величина может значительно изменяться в зависимости от местных геологических условий; в некоторых регионах доза может оказаться больше в 10 раз, а для ряда ограниченных территорий - в 100 раз. Доза, вызванная поступлением естественных радионуклидов из воздуха, продуктов питания и воды (исключая вдыхания радона), составляет около 0,23 мЗв (23 мбэр); калий-40 вместе с радионуклидами уранового и ториевого рядов составляет около 75% от этой дозы. Доза от калия-40 варьируется обычно незначительно, тогда как доза от урана и тория может изменяться значительно [2]
Радон представляет собой наиболее опасный природный источник радиации [3]. Он является инертным газом и представлен двумя изотопами: радоном-222, радиологически наиболее значимым (продукт распада радия-226), и радоном-226, который часто называют тороном (продукт распада радия-225). Уровень концентрации радона в помещениях зависит от скорости его образования, определяемой концентрацией радия-226 в почве и других материалах, а также от интенсивности, с которой он переносится в воздух помещений и удаляется из них. На эти процессы влияют многие факторы (местные геологические условия, характеристики почвы, строительные материалы, тип постройки, тип вентиляционной системы и т.д.). В зависимости от этих факторов эффективная доза от вдыхания радо-на-222 и его дочерних продуктов оценивается в 1,2 мЗв (120 мбэр) и примерно в 0,07 мЗв (7 мбэр) - от вдыхания торона. Однако в некоторых географических районах индивидуальная доза может в 10 раз превышать среднюю. Особенности геологического строения земной коры в регионе, а также тип постройки могут оказаться причиной увеличения дозы внутри помещения в несколько сот раз по сравнению со средними значениями. Поэтому снижение поступления радона в помещение является одной из главных задач в области радиационной экологии.
Основным путем решения этой задачи является оценка потенциальной радоноопасности территорий застройки с целью определения требуемой радонозащиты зданий и сооружений. Концептуально подход к оценке потенциальной радоноопасности очевиден. Он должен быть основан на анализе фактических значений объемной активности (OA) радона в воздухе помещений, изучении зависимости между плотностью потока радона с поверхности грунта и OA радона в помещениях и, наконец, установлении закономерностей процесса выделения радона с поверхности земли.
Искусственные источники. Определение групп населения, подвергающихся воздействию облучения от искусственных источников, и оценка степени этого облучения производятся исходя из сведений о способе производства этих источников и характере их использования. Персонал, непосредственно связанный с производством и применением источников радиации, подвергается воздействию облучения в процессе работы. Население подвергается как прямому (например, в медицине), так и косвенному (например, в результате выброса радиоактивных материалов в окружающую среду при штатной работе ядерных установок или в аварийных ситуациях) воздействию.
В медицине ионизирущее излучение широко применяется как для диагностики, так и при лечении травм и заболеваний (рис.1). Индивидуальная годовая эффективная доза в Европе при диагностике (рентгеновское излучение при медицинских обследованиях) составляет около 1,1 мЗв (ПО мбэр). Средние дозы в европейских странах сильно меняются (от 0,4 до 1,6 мЗв, или 40-160 мбэр). Индивидуальная эффективность терапии составляет около 0,7 мЗв (70 мбэр) (исключая воздействие на органа или ткани, специально подвергшиеся терапии) и значительно меняется по странам.
Атмосферные испытания ядерного оружия. Атмосферные испытания ядерного оружия начались в 1945 г. и продолжались до 80-х гг.; более интенсивные периоды испытаний приходились на 50-е годы и начало 60-х годов. В результате таких испытаний в атмосферу были выброшены огромные количества радиоактивных продуктов. Прежде чем выпасть на земную поверхность, они равномерно рассеялись в стратосфере в глобальном масштабе. Во время испытаний ядерного оружия в атмосферу выбрасывались самые разнообразные продукты деления, образовавшиеся при взрыве, но современное глобальное загрязнение представлено наиболее долгоживущими радионуклидами. В основном это цезий-737 и стронций-90, имеющие период полураспада около 30 лет. Наиболее значительное облучение происходило в периоды испытаний ядерного оружия; с прекращением испытаний в 60-х гг. оно сильно уменьшилось. Индивидуальная годовая эффективная доза в 7996 г. на 40-50° северной широты (где уровни глобального загрязнения самые высокие) составляет около 0,009 мЗв (0,9 мбэр); при этом основной вклад вносит цезий-757 [4].Удобрения. Большинство разрабатываемых фосфатных месторождений содержат уран в довольно высокой концентрации. В процессе добычи и переработки руды выделяется радон. Удобрения также радиоактивны и содержащиеся в них радиоизотопы проникают из почвы в пищевые культуры. Радиоактивное загрязнение в этом случае обычно незначительно, но возрастает, если удобрения вносят в землю в жидком виде или содержащие фосфаты вещества скармливают скоту.
Другие источники. К другим источники облучения относится производство атомной энергии в мирных и военных целях, исключая топливный цикл (добыча урана, его обогащение, изготовление топлива, работа реактора, регенерация топлива и т.д.), производство ядерного оружия и радиоизотопов, падение спутников с ядерными двигателями, использование промышленных источников радиации (например, промышленная радиография, стерилизация, скважинный каротаж) и т.д. В целом, за исключением крупных аварий (таких как Чернобыльская), влияние этих источников на формирование полной индивидуальной дозы по сравнению с другими источниками облучения невелико. По состоянию на конец 80-х - начало 90-х гг. годовая индивидуальная эффективная доза, вызванная производством атомной энергии, оценивается в 0,1 мкЗв, а вызванная производством радиоизотопов - в 0,02 мкЗв. Несколько более высокие дозы получают люди, проживающие вблизи ядерных установок. Так, проживающие вблизи работающих ядерных реакторов, могут получить дозу до 1-20 мкЗв, проживающие вблизи крупных регенерационных установок - до нескольких сот мкЗв (несколько десятков мбэр). Источником облучения являются и многие общеупотребительные предметы, содержащие радиоактивные вещества. Едва ли не самый распространенный - часы со светящимся циферблатом. Они дают годовую дозу, в 4 раза превышающую обусловленную утечками на АЭС. Обычно при изготовлении таких часов используют радий, что приводит к облучению всего организма, хотя на расстоянии 1 мот циферблата излучение в 10 ООО слабее, чем на расстоянии 7 см. Сейчас пытаются заменить радий тритием, облучение от которого меньше. Радиоактивные изотопы используют также в светящихся указателях входа-выхода, компасах, телефонных дисках, прицелах и т.д.