Рефераты по БЖД

Методы регистрации ионизирующего излучение

Фотоэффект — энергия гамма-кванта поглощается электроном оболочки атома, и электрон, совершая работу выхода, покидает атом (который становится ионизированным). Области применения гамма-излучения:

Гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами.

Консервирование пищевых продуктов.

Стерилизация медицинских материалов и оборудования.

Лучевая терапия.

Уровнемеры.

Гамма-каротаж в геологии.

Гамма-высотомер, измерение расстояния до поверхности при приземлении спускаемых космических аппаратов.

Гамма-стерилизация специй, зерна, рыбы, мяса и других продуктов для увеличения срока хранения.

Биологические эффекты Облучение гамма-квантами, в зависимости от дозы и продолжительности, может вызвать хроническую и острую лучевые болезни. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором. Защитой от гамма-излучения может служить слой вещества. Эффективность защиты (то есть вероятность поглощения гамма-кванта при прохождении через неё) увеличивается при увеличении толщины слоя, плотности вещества и содержания в нём тяжёлых ядер (свинца, вольфрама, обеднённого урана).

Нейтронное излучение возникает при ядерных реакциях (в ядерных реакторах, промышленных и лабораторных установках, при ядерных взрывах). Свободный нейтрон - это нестабильная, электрически нейтральная частица с временем жизни 885 сек. При неупругих взаимодействиях возникает вторичное излучение, которое может состоять как из заряженных частиц, так и из гамма-квантов. При упругих взаимодействиях возможна обычная ионизация вещества. Проникающая способность нейтронов очень велика по причине отсутствия заряда и, как следствие, слабого взаимодействия с веществом. Проникающая способность нейтронов зависит от их энергии и состава атомов вещества, с которыми они взаимодействуют. Слой половинного ослабления лёгких материалов для нейтронного излучения в несколько раз меньше, чем для тяжёлых. Тяжёлые материалы, например металлы, хуже ослабляют нейтронное излучение, чем гамма-излучение. Условно нейтроны в зависимости от кинетической энергии разделяются на быстрые (до 10 МэВ), сверхбыстрые, промежуточные, медленные и тепловые. Нейтронное излучение обладает большой проникающей способностью. Медленные и тепловые нейтроны вступают в ядерные реакции, в результате могут образовываться стабильные или радиоактивные изотопы. Лучшими для защиты от нейтронного излучения являются водородсодержащие материалы. Обычно применяют воду, парафин, полиэтилен. Кроме того, нейтронное излучение хорошо поглощается бором, бериллием, кадмием, графитом. Поскольку нейтронное излучение сопровождается гамма-излучением, необходимо применять многослойные экраны из различных материалов: свинец-полиэтилен, сталь — вода и т. д. В ряде случаев для одновременного поглощения нейтронного и гамма-излучений применяют водные растворы гидроксидов тяжёлых металлов, например, железа Fe(OH)3. Нейтронное излучение является потоком электронейтральных частиц ядра. Так называемое вторичное излучение нейтрона, когда он сталкивается с каким-либо ядром или электроном, оказывает сильное ионизирующее воздействие. Ослабление нейтронного излучения эффективно осуществляется на ядрах лёгких элементов, особенно водорода, а также на материалах, содержащих такие ядра — воде, парафине, полиэтилене и др. При внешнем облучении основную роль играют гамма- и нейтронное излучение. Альфа- и бета-частицы составляют главный поражающий фактор радиоактивных облаков, образуемых продуктами деления, остатками расщепляющегося материала и вторично активированными веществами при ядерном взрыве, однако эти частицы легко поглощаются одеждой и поверхностными слоями кожи. Под действием медленных нейтронов в организме создаётся наведенная радиоактивность, которая была обнаружена в костях и других тканях многих людей, умерших в Японии от лучевой болезни. Нейтронная бомба отличается от «классических» видов ядерного оружия — атомной и водородной бомб — прежде всего мощностью. Она имеет мощность около 1 кт ТНТ, что в 20 раз меньше мощности бомбы, сброшенной на Хиросиму, и примерно в 1000 раз меньше больших (мегатонных) водородных бомб. Ударная волна и тепловое излучение, возникающие при взрыве нейтронной бомбы, в 10 раз слабее, чем при воздушном взрыве атомной бомбы типа «Хиросима». Так, взрыв нейтронной бомбы на высоте 100 м над землёй, вызовет разрушения только в радиусе 200—300 м. Губительное для всего живого действие оказывает излучение быстрых нейтронов, плотность потока которых при взрыве нейтронной бомбы в 14 раз выше, чем при взрыве «классических» ядерных бомб. Нейтроны убивают всё живое в радиусе 2,5 км. Поскольку нейтронное излучение создаёт короткоживущие радиоизотопы, к эпицентру взрыва нейтронной бомбы можно «безопасно» приблизиться — по утверждению её создателей — уже через 12 ч. Для сравнения укажем, что водородная бомба надолго заражает радиоактивными веществами территорию радиусом около 7 км.

Методы регистрации ионизирующего излучение

Ионизация

Ионизация может быть вызвана альфа и бета излучениями непосредственно, и косвенно рентгеновским, гамма и нейтронным излучениями. Образовавшиеся пары ионов могут быть собраны, и количество накопленных ионных пар соотнесено с уровнем излучения, вызвавшего ионизацию. Во многих приборах дозиметрического контроля ионизация используется в качестве механизма регистрации.

Ионизацио́нная ка́мера — газонаполненный датчик, предназначенный для измерения уровня ионизирующего излучения.

Измерение уровня излучения происходит путём измерения уровня ионизации газа в рабочем объёме камеры, который находится между двумя электродами. Между электродами создаётся разность потенциалов. При наличии ионов в газе между электродами возникает ионный ток, который может быть измерен. Ток при прочих равных условиях пропорционален скорости возникновения ионов и, соответственно, мощности дозы облучения.

В широком смысле к ионизационным камерам относят также пропорциональные счётчики и счётчики Гейгера-Мюллера. В этих приборах используется явление так называемого газового усиления за счёт вторичной ионизации — в сильном электрическом поле электроны, возникшие при пролёте ионизирующей частицы, разгоняются до энергии, достаточной, чтобы в свою очередь ионизировать молекулы газа. В узком смысле ионизационная камера — это газонаполненный ионизационный детектор, работающий вне режима газового усиления. Ниже термин используется именно в этом значении. Газ, которым заполняется ионизационная камера, обычно является инертным газом (или их смесью) с добавлением легко ионизирующегося соединения (обычно углеводорода, например метана или ацетилена). Открытые ионизационные камеры (например, ионизационные детекторы дыма) заполнены воздухом. Ионизационные камеры бывают токовыми (интегрирующими) и импульсными. В последнем случае на анод камеры собираются быстро двигающиеся электроны (за время порядка 1 мкс), тогда как медленно дрейфующие тяжёлые положительные ионы не успевают за это время достичь катода. Это позволяет регистрировать отдельные импульсы от каждой частицы. В такие камеры вводят третий электрод — сетку, расположенную вблизи анода и экранирующую его от положительных ионов.

Перейти на страницу номер:
 1  2  3 


Другие рефераты:

© 2010-2024 рефераты по безопасности жизнедеятельности