Рефераты по БЖД

Ионизирующие излучения, их характеристики и методы измерений

Выбитый электрон называется фотоэлектроном. В результате его отрыва в атоме появляется свободный уровень, который заполняется одним из наружных электронов. При этом, либо испускается вторичное мягкое характеристическое излучение (процесс флюоресценции), либо энергия передается одному из электронов, который покидает атом (электрон Оже). Флюоресцентное излучение наблюдают в материалах с большим атомным номером. В материалах с низким атомным номером преобладает образование электронов Оже. Вероятность фотоэффекта увеличивается с ростом атомного номера материала и уменьшается с ростом энергии фотона.

С ростом энергии гамма-квантов явление фотоэффекта становится все меньше, а при энергии 100–200 кэВ начинает преобладать Комптон эффект.

Комптоновским рассеиванием называется процесс взаимодействия фотонного излучения с веществом, в котором фотон в результате упругого столкновения с орбитальным электроном теряет часть своей энергии и изменяет направление своего первоначального движения, а из атома выбивается электрон отдачи (комптоновский электрон) (рис.4).

Энергия комптоновского электрона равна:

Е = \ (2)

Образование электронно-позитронных пар. Если энергия гамма кванта превышает 1,02 МэВ, то он поглощается ядром, а из последнего одновременно вылетают электрон и позитрон (рис.5). Таким образом, гамма кванты способны косвенно ионизировать вещество. Возникшей паре передается вся энергия гамма кванта за вычетом энергии покоя пары, равной 1,022 МэВ.

Следует отметить, что позитрон нестабилен в присутствии электронов среды. Он быстро исчезает за счет аннигиляции с одним из электронов. В этом случае испускается 2 фотона с энергией по 0,511 МэВ.

Рассмотрим, проникающую способность гамма-квантов.

Как уже отмечалось, гамма-квант образуется при переходе ядра в более низкие энергетические состояния. Не имея массы, они не могут замедляться в среде, а лишь поглощаются или рассеиваются.

·

· При прохождении через вещество их энергия не меняется, но уменьшается интенсивность излучения по следующему закону (рис.6):

I = Iо е–- µх (2)

где: I = Еγn/t; n/t – число гамма-квантов, падающих на единицу поверхности в единицу времени (плотность потока гамма-квантов); m коэффициент поглощения; х – толщина поглотителя (вещества), см; Iо – интенсивность квантов до прохождения поглотителя, МэВ/с.

В формуле (2) величину µ можно найти в таблицах, ноона не несет прямой информации о степени поглощения гамма лучей веществом.

В практических расчетах удобно пользоваться и такой табличной величиной, как «толщина слоя половинного ослабления». Толщина слоя половинного ослабления – это такая толщина слоя материала, проходя которую интенсивность излучения гамма-квантов уменьшается в 2 раза. Запишем уравнение (2) в виде:

Iо /I = е– µх (3)

Полагая Iо/I = 2 и логарифмируя правую и левую части уравнения (3), получим: ln2 = md, d = 0,693/m.

Тогда, формула (3) примет вид:

I = Iо е– 0,693х/d (4)

Толщина слоя половинного ослабления d берется из таблиц, но если они отсутствуют, то эта величина может быть вычислена приближенно по плотности материала ρ:

d = 13/r, (5)

где: 13 см – слой воды, ослабляющий гамма-излучение в 2 раза; r плотность материала, г/см3. Для некоторых материалов величины d представлены в таблицах.

Рис.6. К оценке ослабления гамма-излучений веществом

Выражение (4) можно преобразовать следующим образом:

Косл = I0/I = ехр (0,693х/d), (6)

где Косл – коэффициент ослабления гамма-излучения проходящего через преграду толщиной х и значением слоя половинного ослабления для данного материала d (рис.6). Выражение (6) можно упростить, полагая, что 0,693 = Ln2, получим:

Косл = 2х/d (7)

Расчеты показывают, что проникающая способность гамма-излучения в воздухе – десятки и сотни метров, в твердых телах – многие сантиметры, в биологической ткани человека часть гамма-квантов проходят через человека насквозь, другие поглощаются.

Бета-излучение

В отличие от фотонов заряженные частицы теряют свою энергию в конденсированной фазе сравнительно небольшими порциями в результате многократных столкновений с электронами среды.

Прохождение бета-частиц через вещество сопровождается упругими и неупругими соударениями с ядрами и электронами тормозящей среды.

Упругое рассеяние бета-частиц на ядрах более вероятно и осуществляется при относительно низких энергиях электронов Еβ< 0,5 МэВ (рис.7). Упругое рассеяние бета-частиц на электронах в Z раз (Z – величина заряда ядра) менее вероятно, чем на ядрах (рис.8). Возможен в редких случаях и сдвиг ядер атомов кристаллической решетки (рис.9).

При энергии бета-частиц выше энергии связи электрона c ядром (до ≈ 1 МэВ) основным механизмом потерь энергии является неупругое рассеяние на связанных электронах, приводящее к ионизации и возбуждению атомов (рис.10).

При больших энергиях электронов главным механизмом потерь энергии является радиационное торможение, при котором возникает тормозное излучение.

·

Одним из вариантов неупругого взаимодействия является К–захват.

Таким образом, процессы взаимодействия бета-частиц со средой характеризуются радиационным торможением и относительно большой потерей энергии или значительным изменением направления их движения в элементарном акте. Вследствие этого взаимодействия интенсивность пучка бета-частиц уменьшается почти по экспоненте с ростом толщины поглощающего слоя х, т.е. для бета-частиц справедлива формула (3).

Путь бета-частиц в веществе представляет ломаную линию, а пробег бета-частиц одинаковых энергий имеет значительный разброс. Это связано с тем, что масса бета-частиц крайне мала, поэтому вероятность упругого рассеяния на ядрах больше, чем у тяжелых частиц. В таблице 2 показана средняя глубина пробега бета-частиц в воздухе, биологической ткани и для примера в алюминии.

· Итак, бета-частицы не имеют точной глубины проникновения, так как обладают непрерывным энергетическим спектром. Для грубой оценки глубины пробега бета-частиц пользуются приближенными формулами. Одна из них:

Перейти на страницу номер:
 1  2  3  4  5  6 


Другие рефераты:

© 2010-2024 рефераты по безопасности жизнедеятельности