Введение
Ионизирующими называют излучения, взаимодействие которых со средой приводит к образованию электрических зарядов различных знаков. Источники этих излучений широко используются в технике, химии, медицине, сельском хозяйстве и других областях, например, при измерении плотности почв, обнаружении течей в газопроводах, измерении толщины листов, труб и стержней, антистатической обработке тканей, полимеризации пластмасс, радиационной терапии злокачественных опухолей и др. Однако следует помнить, что источники ионизирующего излучения представляют существенную угрозу здоровью и жизни использующих их людей.
Существуют два вида ионизирующие излучений:
• корпускулярное, состоящее из частиц с массой покоя, отличной от нуля (альфа- и бета-излучение и нейтронное излучение);
• электромагнитное (гамма-излучение и рентгеновское) с очень малой длиной волны.
Биологическое действие ионизирующих излучений сводится к изменению структуры или разрушению различных органических веществ (молекул), из которых состоит организм человека. Это приводит к нарушению биохимических процессов, протекающих в клетках, или даже к их гибели, в результате чего происходит поражение организма в целом.[1]
Основные опасности при авариях на радиационно-опасных объектах
Радиационно-опасными называют объекты народного хозяйства, использующие в своей деятельности источники ионизирующего излучения.
В настоящее время почти в 30 странах мира эксплуатируется около 450 атомных энергоблоков (общая мощность более 350 ГВт), из них 46 — в странах СНГ (общая мощность более 30 МВт). Общее количество вырабатываемой атомными станциями электроэнергии в мире составляет около 20 %, в Европе — почти 35 %.
За всю историю атомной энергетики (с 1954 г) во всем мире было зарегистрировано более 300 аварийных ситуаций (за исключением СССР). В СССР, кроме аварии на ЧАЭС, другие аварии были неизвестны.
Кроме опасности, которые создают аварии на АЭС, существуют еще многие реальные источники радиоактивного заражения. Они непосредственно связаны с добычей урана, его обогащением, переработкой, транспортировкой, хранением и захоронением отходов. Опасными являются многочисленные отрасли науки и промышленности, использующие изотопы: изотопная диагностика, рентгеновское обследование больных, рентгеновская оценка качества технических изделий; радиоактивными иногда являются некоторые строительные материалы.
Минздравом России в 1999 г. были утверждены нормы радиационной безопасности (НРБ-99) на основании следующих нормативных документов: Федеральный закон «О радиационной безопасности населения» № 3-ФЗ от 09.01.96 г.; Федеральный закон «О санитарно-эпидемиологическом благополучии населения» № 52-ФЗ от 30.03.99 г.; Федеральный закон «Об использовании атомной энергии» № 170-ФЗ от 21.11.95 г.; Закон РСФСР «Об охране окружающей природной среды» № 2060-1 от 19.12.91 г.; Международные основные нормы безопасности для защиты от ионизирующих излучений и безопасности источников излучений, принятые совместно: Продовольственной и сельскохозяйственной организацией Объединенных Наций, Международным агентством по атомной энергии; Международной организацией труда; Агентством по ядерной энергии организации экономического сотрудничества и развития; Панамериканской организацией здравоохранения и Всемирной организацией здравоохранения (серия безопасности № 115), 1996.; Общие требования к построению, изложению и оформлению санитарно-гигиенических и эпидемиологических нормативных и методических документов. Руководство Р 1.1.004-94. Издание официальное. М. Госкомса-нэпиднадзор России. 1994 г.
Радиационные аварии по масштабам делятся на 3 типа:
— локальная авария — это авария, радиационные последствия которой ограничиваются одним зданием;
— местная авария — радиационные последствия ограничиваются зданиями и территорией АЭС;
— общая авария — радиационные последствия которой распространяются за территорию АЭС.
Основные поражающие факторы радиационных аварий:
— воздействие внешнего облучения (гамма- и рентгеновского; бета- и гаммаизлучения; гамма-нейтронного излучения и др.);
— внутреннее облучение от попавших в организм человека радионуклидов (альфа- и бетаизлучение);
— сочетанное радиационное воздействие как за счет внешних источников излучения, так и за счет внутреннего облучения;
— комбинированное воздействие как радиационных, так и нерадиационных факторов (механическая травма, термическая травма, химический ожог, интоксикация и др.).
После аварии на радиоактивном следе основным источником радиационной опасности является внешнее облучение. Ингаляционное поступление радионуклидов в организм практически исключено при правильном и своевременном применении средств защиты органов дыхания.
Внутреннее облучение развивается в результате поступления радионуклидов в организм с продуктами питания и с водой. В первые дни после аварии наиболее опасны радиоактивные изотопы йода, которые накапливаются щитовидной железой. Наибольшая концентрация изотопов йода обнаруживается в молоке, что особенно опасно для детей.
Через 2-3 месяца после аварии основным агентом внутреннего облучения становится радиоактивный цезий, проникновение которого в организм возможно с продуктами питания. В организм человека могут попасть и другие радиоактивные вещества (стронций, плутоний), загрязнение окружающей среды которыми имеет ограниченные масштабы.
Характер распределения радиоактивных веществ в организме:
— накопление в скелете (кальций, стронций, радий, плутоний);
— концентрируются в печени (церий, лантан, плутоний и др.);
— равномерно распределяются по органам и системам (тритий, углерод, инертные газы, цезий и др.);
— радиоактивный йод избирательно накапливается в щитовидной железе (около 30%), причем удельная активность ткани щитовидной железы может превышать активность других органов в 100-200 раз.
Основными параметрами регламентирующими ионизирующее излучение являются экспозиционная, поглощенная и эквивалентная дозы.
Экспозиционная доза — основана на ионизирующем действии излучения, это — количественная характеристика поля ионизирующего излучения. Единицей экспозиционной дозы является рентген (Р). При дозе 1Р в 1см3 воздуха образуется 2,08 • 109 пар ионов. В международной системе СИ единицей дозы является кулон на килограмм (Кл/кг) • 1Кл/кг = 3876 Р.
Поглощенная доза — количество энергии, поглощенной единицей массы облучаемого вещества. Специальной единицей поглощенной дозы является 1 рад. В международной системе СИ — 1 Грей (Гр). 1 Гр = 100 рад.
Эквивалентная доза (ЭД) — единицей измерения является бэр. За 1 бэр принимается такая поглощенная доза любого вида ионизирующего излучения, которая при хроническом облучении вызывает такой же биологические эффект, что и 1 рад рентгеновского или гамма-излучения. В международной системе СИ единицей ЭД является Зиверт (Зв). 1 Зв равен 100 бэр.