Рефераты по БЖД

Радиационная безопасность

Эквивалентная доза излучения сложного состава определяется по формуле:

где Dэкв - эквивалентная поглощенная доза, бэр;

Dп,i и KKi поглощенные дозы в радах и коэффициенты качества соответствующих компонент излучения.

Расчет доз, создаваемых источниками

b-, g-излучения.

На практике очень часто бывает оценить дозу излучения, которую получает человек при работе с радионуклидом и известным его энергетическим спектром, известной активности а, на известном расстоянии от него r, известное время t.

Расчет доз, создаваемых источниками g-излучения.

Предположим, что источник обладает энергетическим спектром с N линиями, энергия i-ой линии Еi, выход g-квантов на распад в i-ой линии спектра Рi, массовый коэффициент истинного поглощения g-излучения i-ой линии спектра mei, тогда в системе СИ получим значение дозы в Зв (зиверт) из следующего выражения [6]:

Однако существует более удобная формула, получаемая из вышеуказанной. Для этого сначала рассчитывают экспозиционную дозу в рентгенах (Р) по нижеприведенной формуле:

,

где Q-активность источника в мКи,

Кg - ионизационная постоянная Р.см2/(ч.мКи),

r-расстояние до источника в см,

t-время облучения в ч.

Далее известно, что для биологической ткани, приближенно, экспозиционная доза в рентгенах численно равна поглощенной дозе в бэр.

Значение Кg табулировано, но его можно вычислить по формуле:

где энергия выражена в МэВ, выходы g-квантов в долях единицы, а массовые коэффициенты истинного поглощения в см2/г.

Расчет доз, создаваемых источниками b- излучения.

Предположим, что имеется источник b- излучения с известными для него Еmax,i и Rmax,i тогда можно рассчитать дозу, создаваемую источником, используя следующее выражение [6]:

где а-активность,

t-время,

m’i-линейный коэффициент ослабления b- излучения в воздухе.

Для выражения дозы в радах необходимо воспользоваться следующей формулой [6]:

,

где Q-активность источника в мКи,

r-расстояние до источника в см,

t-время облучения в ч,

Еmax,i-максимальная энергия источника, МэВ,

Rmax,i-максимальный пробег в г/см2.

Предельно допустимые дозы облучения.

Приведенные ниже значения предельных доз облучения, согласно НРБ- [4] определяются, как не наносящие вреда здоровью, при наблюдении современными методами за облучаемыми, при равномерном накоплении в течение 50-и лет (см таб.3).

Таблица 3 [6].

Группа органов

1

2

3

4

доза в год, бэр/год

5

15

30

75

В группы входят различные органы и ткани. Разбиение на группы приведено в таблице 4:

Таблица 4.

Группа.

Органы и ткани.

1

Все тело, костный мозг.

2

Легкие, желудочно-кишечный тракт.

3

Костная ткань, щитовидная железа.

4

Кисти рук.

В свете представленных данных необходимо проведение постоянного сравнения доз, получаемых работниками в сфере атомной энергетики, с предельными с целью защиты их от поражения радиацией.

Расчет защитных экранов от g-излучения.

Предположим, что имеется источник g-излучения сложного состава, создающий дозу D0,i для каждой компоненты и полную дозу D0 без защитного экрана, и известна предельная доза облучения Dпр, по данным НРБ, то сначала рассчитывают так называемую кратность ослабления ki для i-ой компоненты [6]:

а затем по таблице находят необходимую толщину защиты для имеющегося в наличие материала, выбирают максимальную и к ней прибавляют толщину слоя при k=2 для данной компоненты. Таким образом, можно вычислить толщину экрана для защиты от g-излучения из ряда доступных материалов (свинец, чугун, бетон).

Биологическое воздействие радиации.

Ионизирующее излучение в основном носит вред тем, что под его воздействием происходит разрушение генетического аппарата клеток, что приводит либо к их гибели, либо, что хуже для организма в целом, к трансформации с утраченной дифференцировкой. Такие клетки могут образовать злокачественную опухоль, прорастающую в органы и нарушающие их работу. При получении определенной дозы облучения возникает так называемая лучевая болезнь [2], которая характеризуется поражением кроветворной системы, поражением слизистой оболочки тонкой кишки, нервной системы.

Степени тяжести лучевой болезни зависят от полученной организмом дозы. Существует острая и хроническая формы лучевой болезни.

Острая лучевая болезнь.

Острая лучевая болезнь развивается при кратковременном облучении всего организма, при получении им дозы от 1 до 100 и более Гр, а 1-3 дня. Летальным исходом, как правило, заканчиваются случаи, в которых организм получил более 10 Гр за 1-3 дня. При получении дозы до 10 Гр развивается острая лучевая болезнь 4-х степеней тяжести.

Острая лучевая болезнь легкой степени тяжести развивается при воздействии излучения в дозе 1-2.5 Гр. Первичная реакция (первые 2-3 дня) - головокружение, тошнота. Латентный период (около 1 месяца) - постепенное снижение первичных признаков. Восстановление полное.

Острая лучевая болезнь средней степени тяжести развивается при воздействии излучения в дозе 2.5-4 Гр. Первичная реакция (первые 1-2 часа) - головокружение, тошнота, рвота. Латентный период (около 25 дней) наличие изменения слизистых оболочек, инфекционных осложнений, возможен летальный исход.

Острая лучевая болезнь тяжелой степени развивается при воздействии излучения в дозе 4-10 Гр. Первичная реакция (первые 30-60 минут) - головная боль, повторная рвота, повышение температуры тела. Латентный период (около 15 дней) - инфекционные поражения, поражения слизистых оболочек, лихорадка. Частота летальных исходов выше, чем при средней степени тяжести.

Перейти на страницу номер:
 1  2  3  4 


Другие рефераты:

© 2010-2024 рефераты по безопасности жизнедеятельности