Взрыв (горение) газового облака. Причинами взрывов могут быть большие газовые облака, образующиеся при утечках или внезапном разрушении герметичных емкостей, трубопроводов и т. п. Процесс взрыва или горения таких газовых облаков имеет ряд специфических особенностей, что приводит к необходимости рассмотреть эти процессы отдельно. Образующиеся в атмосфере газовые облака чаще всего имеют сигарообразную форму, вытянутую по направлению ветра. Инициаторы горения или взрыва в этих случаях носят чаще всего случайный характер. Причем воспламенение не всегда сопровождается взрывом.
При плохом перемешивании газообразных веществ с атмосферным воздухом взрыва вообще не наблюдается. В этом случае при воспламенении газо- или паровоздушной смеси от места инициирования с дозвуковой скоростью будет распространяться «волна горения». Так как распространение пламени происходит со сравнительно низкой дозвуковой скоростью, в волне горения давление не повышается. В таком процессе имеет место только расширение продуктов горения за счет их нагрева в зоне пламени, и давление успевает выровняться по всему объему. Медленный режим горения облака с наружной поверхности с большим выделением лучистой энергии может привести к образованию множества очагов пожаров на промышленном объекте. При оценке разрушительного действия взрыва газового облака в открытом пространстве необходимо определить избыточное давление (скоростной напор) во фронте пламени. Если пламя распространяется от точечного источника зажигания в неограниченном пространстве, то оно имеет форму, близкую к сфере радиуса г, который непрерывно увеличивается по закону
r= ekut,
где u —нормальная скорость пламени; е —степень расширения газов при сгорании; k—коэффициент искривления фронта пламени; t — текущее значение времени, отсчитываемое от момента зажигания.
В произвольной точке М на расстоянии х от точки воспламенения скорость газа
vx = v0 (r3/x3)=ku(e-1) (ekut/x)3,
где v0 — скорость движения фронта пламени при свободном сгорании; v0 = (е—1)ku.
Если в точке М расположен какой-либо объект, то на него воздействует скоростной напор
Р=pv2x/2=(p/2)[ku(e-1) (ekut/x)3]2,
где р — плотность газов при нормальных условиях.
Скоростной напор достигает максимума, когда фронт пламени подходит непосредственно к данному объекту. Для пламени предельных углеводородов скоростной напор в открытом пространстве может достигать 26 кПа.
По избыточному давлению взрыва можно ориентировочно оценить степень разрушения различных видов объектов (см. приложение 3).
Оценка пожароопасных зон. Под пожаром обычно понимают неконтролируемый процесс горения, сопровождающийся уничтожением материальных ценностей и создающий опасность для жизни людей. Пожар может принимать различные формы, однако все они в конечном счете сводятся к химической реакции между горючими веществами и кислородом воздуха (или иным видом окислительных сред), возникающей при наличии инициатора горения или в условиях самовоспламенения.
Образование пламени связано с газообразным состоянием веществ, поэтому горение жидких и твердых веществ предполагает их переход в газообразную фазу. В случае горения жидкостей этот процесс обычно заключается в простом кипении с испарением у поверхности. При горении почти всех твердых материалов образование веществ, способных улетучиваться с поверхности материала, и попадание в область пламени происходит путем химического разложения (пиролиза). Большинство пожаров связано с горением твердых материалов, хотя начальная стадия пожара может быть связана с горением жидких и газообразных горючих веществ, широко используемых в современном промышленном производстве.
При горении принято подразделять два режима: режим, в котором горючее вещество образует однородную смесь с кислородом или воздухом до начала горения (кинетическое пламя), и режим, в котором горючее и окислитель первоначально разделены, а горение протекает в области их перемешивания (диффузионное горение). За редким исключением при обширных пожарах встречается диффузионный режим горения, при котором скорость горения во многом определяется скоростью поступления в зону горения образующихся летучих горючих веществ. В случае горения твердых материалов скорость поступления летучих веществ непосредственно связана с интенсивностью теплообмена в зоне контакта пламени и твердого горючего вещества. Массовая скорость выгорания [г/(м2-с)] зависит от теплового потока, воспринимаемого твердым горючим, и его физико-химических свойств. В общем виде эту зависимость можно представить как:
Mi=(Qпр-Qух)/r ,
где Qпр — тепловой поток от зоны горения к твердому горючему, кВт/м ; Qух — теплопотери твердого горючего в окружающую среду, кВт/м2; г — теплота, необходимая для образования летучих веществ, кДж/г; для жидкостей представляет собой удельную теплоту парообразования.
Тепловой поток, поступающий из зоны горения к твердому горючему, существенным образом зависит от энергии, выделенной в процессе горения, и от условий теплообмена между зоной горения и поверхностью твердого горючего. В этих условиях режим и скорость горения могут в значительной степени зависеть от физического состояния горючего вещества, его распределения в пространстве и характеристик окружающей среды.
Пожаровзрывоопасность веществ характеризуется многими параметрами: температурами воспламенения, вспышки, самовозгорания, нижним (НКПВ) и верхним (ВКПВ) концентрационными пределами воспламенения; скоростью распространения пламени, линейной и массовой (в граммах в секунду) скоростями горения и выгорания веществ.
Под воспламенением понимается возгорание (возникновение горения под воздействием источника зажигания), сопровождающееся появлением пламени. Температура воспламенения —минимальная температура вещества, при которой происходит загорание (неконтролируемое горение вне специального очага).
Температура вспышки — минимальная температура горючего вещества, при которой над его поверхностью образуются газы и пары, способные вспыхивать (вспыхивать — быстро сгорать без образования сжатых газов) в воздухе от источника зажигания (горящего или раскаленного тела, а также электрического разряда, обладающих запасом энергии и температурой, достаточными для возникновения горения вещества). Температура самовозгорания —самая низкая температура, при которой происходит резкое увеличение скорости экзотермической реакции (при отсутствии источника зажигания), заканчивающееся пламенным горением. Концентрационные пределы воспламенения — минимальная (нижний предел) и максимальная (верхний предел) концентрации, которые характеризуют области воспламенения.
Температура вспышки, самовоспламенения и воспламенения горючих жидкостей определяется экспериментально или расчетным путем согласно ГОСТ 12.1.044—89. Нижний и верхний концентрационный пределы воспламенения газов, паров и горючих пылей также могут определяться экспериментально или расчетным путем согласно ГОСТ 12.1.041—83*, ГОСТ 12.1.044—89 или руководству по «Расчету основных показателей пожаровзрывоопасности веществ и материалов».