Введение
Расчет пожара (прогнозирование опасных факторов) необходим для оценки своевременности эвакуации и разработке мероприятий по ее совершенствованию, при создании и совершенствовании систем сигнализации, оповещения и тушения пожаров, при разработке планов пожаротушения (планирования боевых действий пожарных подразделений при пожаре), для оценки фактических пределов огнестойкости, проведении пожарно-технических экспертиз и других целей.
В развитии пожара в помещении обычно выделяют три стадии:
- начальная стадия - от возникновения локального неконтролируемого очага горения до полного охвата помещения пламенем; при этом средняя температура среды в помещении имеет не высокие значения, но внутри и вокруг зоны горения температура такова, что скорость тепловыделения выше скорости отвода тепла из зоны горения, что обуславливает само ускорение процесса горения;
- стадия полного развития пожара - горят все горючие вещества и материалы, находящиеся в помещении; интенсивность тепловыделения от горящих объектов достигает максимума, что приводит и к быстрому нарастанию температуры среды помещения до максимальных значений;
- стадия затухания пожара – интенсивность процесса горения в помещении снижается из-за расходования находящейся в нём массы горючих материалов или воздействия средств тушения пожара.
Однако в любом случае, как показывает уравнение «стандартного пожара», температура в очаге пожара через 1,125 мин достигает значения 365оС. Поэтому очевидно, что возможное время эвакуации людей из помещений не может превосходить продолжительности начальной стадии пожара.
Физические закономерности распространения пламени
Общие сведения
Горение, сложное, быстро протекающее химическое превращение, сопровождающееся выделением значительного количества тепла и обычно ярким свечением (пламенем). В большинстве случаев основу горения составляют экзотермические окислительные реакции вещества, способного к горению (горючего), с окислителем. Современная физико-химическая теория горения относит к горению все химические процессы, связанные с быстрым превращением и тепловым или диффузионным их ускорением, в том числе разложение взрывчатых веществ, озона, и др.; соединение ряда веществ с хлором, фтором и т. д.; взаимодействие многих металлов с хлором, окисей натрия и бария с двуокисью углерода и т. д. Химическая реакция горения в большинстве случаев является сложной, т. е. состоит из большого числа элементарных химических процессов. Кроме того, химическое превращение при горении тесно связано с рядом физических процессов — переносом тепла и масс и характеризуется соответствующими гидро- и газодинамическими закономерностями. В силу комплексной природы горения, суммарная скорость горения практически никогда не тождественна скорости чисто химического взаимодействия реагентов системы. Более того, для гетерогенных процессов скорость горения часто эквивалентна скорости того или иного лимитирующего чисто физического процесса (испарения, диффузии и т. д.).
Наиболее общее свойство горения — возможность при известных условиях прогрессивного самоускорения химического превращения — воспламенения, связанного с накоплением в реагирующей системе тепла или активных продуктов цепной реакции, Характерная черта явлений горения — способность к пространственному распространению, вследствие передачи тепла или диффузии активных частиц; в первом случае говорят о тепловом, во втором — о диффузионном механизме распространения пламени. Другая характерная особенность горения — наличие критических условий, т. е. определенных, характерных для данной горючей системы областей значений параметров (состав смеси, давление, содержание примесей, начальная температура смеси и т. д.), вне которых реакция горения протекает стационарно, а внутри области — самоускоряется. Диффузионный механизм горения обычно наблюдается при низких давлениях. Горение широко применяется в технике для получения тепла в топках, печах и камерах сгорания двигателей. При этом очень часто используется так называемое диффузионное горение, при котором распространение пламени определяется взаимной диффузией (кондуктивной или турбулентной) горючего и окислителя.
Для любого вида горения характерны две типичные стадии — воспламенение и последующее сгорание (догорание) вещества до продуктов полного горения. Время, затрачиваемое на обе стадии, составляет общее время горения. Обеспечение минимального суммарного времени горения при максимальной полноте горения (полноте тепловыделения) — основная задача техники сжигания. Для технического горения важны также физические процессы подготовки смеси: испарение, перемешивание и т. д. Основные термодинамические характеристики горючей смеси — теплотворная способность и теоретическая (или адиабатическая) температура горения, т. е. та температура, которая могла бы быть достигнута при полном сгорании без потерь тепла.
По агрегатному состоянию горючего и окислителя различают:
1) гомогенное горение — горение газов и парообразных горючих в среде газообразного окислителя (большей частью кислорода воздуха);
2) горение взрывчатых веществ и порохов;
3) гетерогенное горение — горение жидких и твёрдых горючих в среде газообразного окислителя; горение в системе жидкая горючая смесь — жидкий окислитель (например, кислота).
Гомогенное горение. Наиболее простой случай представляет горение заранее перемешанных смесей. Большей частью реакции являются цепными. В обычных условиях горения при их развитии (зарождении и развитии цепей) определяющее значение имеет предварительное нагревание вещества (термическая активация).
Для начала горения необходим начальный энергетический импульс, чаще всего нагревание горючего. Различают 2 способа воспламенения: самовоспламенение и вынужденное воспламенение, или зажигание (накалённым телом, пламенем, электрической искрой и др.).
Важнейший вопрос теории горения — распространение пламени (зоны резкого возрастания температуры и интенсивной реакции). Различают нормальное распространение горения, или дефлаграцию, где ведущим процессом является передача тепла теплопроводностью, и детонацию, где поджигание производится ударной волной. Нормальное горение, в свою очередь, подразделяется на ламинарное и турбулентное.
Ламинарное пламя обладает вполне определённой скоростью перемещения относительно неподвижного газа, которая зависит от состава смеси, давления и температуры и определяется только химической кинетикой и молекулярной теплопроводностью. Эта нормальная скорость является физико-химической константой смеси.
Скорость распространения турбулентного пламени зависит от скорости потока, а также степени и масштаба турбулентности. Горение в потоке (факельный процесс) — горение струи при её истечении из трубы (сопла) в открытое пространство или камеру — очень распространённый в технике вид горения. Различают горение при истечении заранее перемешанной смеси и горение при раздельном истечении горючего и окислителя, когда процесс определяется перемешиванием (диффузией) двух потоков.