А
Требуемое сопротивление растеканию заземлители, который принимаем общим для установок 10 и 0,4 кВ, [2, табл. 1]:
Ом
Требуемое сопротивление искусственного заземлители [2, с. 207]:
Ом
Тип заземлителя выбираем контурный, размещенный по периметру прямоугольника длиной 15 м и шириной 10 м вокруг здания подстанции. Вертикальные электроды размещаем на расстоянии а=5 м один от другого.
Из предварительной схемы следует, что в принятом нами заземлителе суммарная длина горизонтального электрода LГ=50 м, а количество вертикальных электродов n=LГ/a = 50/5 = 10 шт., рис. 1а.
Уточняем параметры заземлителя путем проверочного расчета.
Определяем расчетное сопротивление растеканию вертикального электрода
[2. с. 90, табл. 3.1]:
Ом
d =12 мм =0,012 м – диаметр электрода,
м.
Определяем расчетное сопротивление растеканию горизонтального электрода [4, с. 90, табл. 3.1.]:
Ом,
где
В=40 мм=0,04 м – ширина полосы,
t=t0=0,8 м – глубина заложения электрода.
Для принятого нами контурного заземлителя при отношении и n=10 шт. по таблице 4 определяем коэффициенты использования электродов заземлителя:
– коэффициент использования вертикальных электродов,
– коэффициент использования горизонтального электрода.
Находим сопротивление растеканию принятого нами группового заземлителя, [2, с. 181]:
Ом
Это сопротивление R=3,9 Ом больше, чем требуемое RИ=0,778 Ом, поэтому принимаем решение увеличить в контуре заземлителя количество вертикальных электродов.
Решение этой задачи представим в виде таблицы
Таблица 4. Расчет защитного заземления
Число вертикальных электродов |
Длина горизонтальных электродов |
Rг |
|
|
R |
10 |
50 |
6,7 |
0,34 |
0,56 |
3,896681 |
28 |
210 |
1,98 |
0,24 |
0,43 |
1,773492 |
54 |
450 |
1,018 |
0,38 |
0,2 |
1,298128 |
88 |
770 |
0,634 |
0,372 |
0,197 |
0,816924 |
97 |
855 |
0,578 |
0,362 |
0,191 |
0,748988 |
Это сопротивление R=0,748 меньше требуемого RИ=0,753 но так как разница между ними невелика и она повышает условия безопасности, принимаем этот результат как окончательный.
Итак, окончательная схема контурного группового заземлителя состоит из 97 вертикальных стержневых электродов длиной 5 м, диаметром 12 мм, с расстоянием между ними равным 5 м и горизонтального электрода в виде сетки длиной 855 м, сечением 4х40 мм, заглубленных в землю на 0,8 м.
Расчет зануления.
Требуется проверить обеспечена ли отключающая способность зануления в сети, при нулевом защитном проводнике – стальной полосе сечением 30x4 мм. Линия 380/220 В с медными проводами 3х6 мм2 питается or трансформатора 100 кВА, 6/0,4 кВ со схемой соединения обмоток «треугольник – звезда с нулевым проводом» (). Двигатели защищены предохранителями I1ном=30 А (двигатель 1) и I2ном=20 А (двигатель 2). Коэффициент кратности тока К=3.
Решение
Решение сводится к проверке условия. (2, с. 233, ф. 6.3):
,
где
– ток однофазного короткого замыкания, проходящий по петле фаза-нуль;
– наименьший допустимый ток по условию срабатывания защиты (предохранителя);
- номинальный ток плавкой вставки предохранителя.
Выполнение этого условия обеспечит надежное срабатывание защиты при коротком замыкании (КЗ) фазы на зануленный корпус электродвигателя, т.е. соединенный нулевым защитным проводником с глухозаземленной нейтральной точкой трансформатора.
– Определяем наименьшие допустимые значения токов для двигателей 1 и 2:
А;
А
– Находим полное сопротивление трансформатора
Ом [2, табл. 6.5]
– Определяем на участке м км активное и индуктивное сопротивления фазного провода; активное и индуктивное сопротивления нулевого защитного провода и внешнее индуктивное сопротивление петли фаза-нуль:
Согласно паспортным данным кабеля марки АПВ 4х6 [6]: