Рефераты по БЖД

Разработка системы защиты атмосферы при производстве поливинилхлорида

От гранулометрического состава и среднего размера зерна зависят объемные свойства порошка (насыпная масса, масса утряски и т.п.), а также сыпучесть и угол естественного откоса.

Насыпной массой называется масса единицы объема свободно насыпанного порошка.

Массой утряски называется масса единицы объема порошка после встряхивания его до постоянного объема.

Насыпная масса определяется плотностью частиц, агрегативной устойчивостью и “конструкционной” прочностью порошка. Сыпучее тело занимает объем, при котором его механическая прочность, обусловленная зацеплением или переплетением частиц, достаточна для сопротивления нагрузке, вызванной тяжестью частиц. Если “конструктивная" прочность порошка слишком велика, то достаточное количество зацеплений обеспечивается уже при рыхлой укладке и насыпная масса невелика.

Масса утряски характеризует способность порошка уплотняться при встряхивании за счет переупаковки частиц, что также имеет значение при переработке ПВХ [11].

Насыпная масса и масса утряски зависят от следующих факторов:

а) Величина частиц с увеличением диаметра частицы в 10 раз масса ее возрастает в 1000 раз, а опрокидывающие момент - в 10000 раз. Если при этом степень шероховатости не увеличивается, то конструкционная прочность возрастает и насыпная масса уменьшается. Таким образом, чем больше размеры части (меньше дисперсность), тем больше при прочих равных условиях насыпная масса.

б) Форма частиц. Порошки со сферическими гладкими частицами имеют большую насыпную массу и массу утряски, чем шероховатые частицы неправильной формы.

Для порошков одинаковой дисперсности с изменением формы частиц и формы их поверхности изменяется прочность зацепления частиц и, следовательно, меняется насыпная масса. С изменением дисперсности и формы частиц насыпная масса и масса утряски могут изменяться.

в) Гранулометрический состав. Порошки, которые характеризуются широкой кривой распределения по размерам (полидисперсные), имеют большую насыпную массу и массу утряски, чем монодисперсные порошки, так как мелкие частицы располагаются в промежутках между крупными.

г) Строение частиц. Порошки, состоящие из крупнопористых частиц, имеют меньшую насыпную массу и массу утряски, чем порошки, состоящие из сплошных частиц, при прочих равных условиях.

д) Состояние поверхности частиц. Если поверхность частиц порошка загрязнена веществами, действующими как смазка, то насыпная масса увеличивается. Если загрязнения повышают внутреннее трение в порошке, то увеличивается зацепление между частицами и насыпная масса уменьшается.

е) Электрический заряд. Наличие заряда привод к электростатическому взаимодействию между частицами. В зависимости от характера действия этих сил - притяжения или отталкивания - насыпная масса соответственно увеличивается или уменьшается.

ж) Условия испытания. Насыпная масса зависит от емкости сосуда, высоты насыпки порошка и т.д. [9]

Объемные свойства ПВХ, в частности, очень важны и для переработки его в виде пластизолей, где они заметно влияют на реологические свойства материала.

Поглощение пластификатора поливинилхлоридом на холоде является хорошей характеристикой пористости как, собственно, зерен, так и порошка в целом.

Важным технологическим свойством ПВХ является сыпучесть, от которой зависит возможность транспортировки полимера и питания им перерабатывающих машин. Сыпучесть учитывается также при проектировании пресс-форм, бункеров машин, при расчете автоматической засыпке материала и т.д.

Сыпучесть характеризуется способностью порошка сыпаться через отверстие заданного диаметра с определенной скоростью на стандартном приборе. Сыпучесть выражается в г/сек.

Среди химических свойств поливинилхлорида важное значение имеют:

термическое и термоокислительное разложение. Здесь важно отметить разложение при температуре до 250 0С, высокотемпературный распад, особенности термоокислительного распада;

разложение под действием света и ионизирующих излучений;

разложение под влиянием механических воздействий.

Из химических реакций поливинилхлорида необходимо отметить:

хлорирование поливинилхлорида;

восстановление поливинилхлорида;

замещение хлора в ПВХ по реакции Фриделя - Крафтса;

взаимодействие ПВХ с металлоорганическими соединениями;

взаимодействие ПВХ с гидроокисями и алкоголятами щелочных металлов;

взаимодействие ПВХ с аммиаком, аминами и амидами;

взаимодействие ПВХ с кислотами;

взаимодействие ПВХ с металлами;

взаимодействие ПВХ с солями органических и неорганических кислот;

реакции частично дегидрохлорированного ПВХ [7].

Применение поливинилхлорида

В настоящее время поливинилхлорид является самым распространенным полимером, используемым в промышленности и быту.

Материалы на основе поливинилхлорида

В этом разделе приводится описание композиционных материалов на основе ПВХ, а также полуфабрикатов и заготовок изделий, производимых на его основе и способы их изготовления.

Композиционные материалы на основе поливинилхлорида

Некоторые композиционные материалы на основе ПВХ и их применение:

Пластикат ПВХ в гранулах (ТУ 6-01-629-75). Применяется для изготовления различных изделий литьем под давлением и экструзией.

Пластикат пленочный и листовой (ТУ 6-05-1146-75). Композиция на основе ПВХ, пластификаторов и других добавок. Применяется для защитного покрытия поверхностей.

Пластикат кабельный 38-01 (ТУ 6-05-1729-75). Термопластичный материал на основе ПВХ.

Пластикат ПВХ в гранулах для изготовления гибких трубок (ТУ 6-01-630-76). Применяется для изготовления экструзией водо-, бензо- и антифризостойких трубок.

Пластикат ПВХ Ш-62-0 (ТУ 6-01-804-76). Композиция на основе ПВХ, пластификатора и других добавок. Применяется для изготовления шлангов вакуум-проводов.

Пластикат ПВХ гранулированный ПХ-1 и ПХ-2 (ТУ 6-01-1089-76). Характеризуется химической стойкостью, эластичностью, термостабильностью. Применяется для изготовления листов, профилей и других изделий для футеровки гальванических ванн, в которых производится хромирование, никелирование, меднение и т.д., а также как антикоррозийный, герметирующий, прокладочный материал.

Пластикат гранулированный медицинский (ТУ 6-05-1533-76). Применяется для изготовления медицинских трубок. Перерабатывается в изделия экструзией.

Пластикат кабельный гранулированный П-30 (ТУ 6-05-5084-76). Термопластичный материал на основе ПВХ, пластификаторов и других добавок. Применяется для изоляции кабелей.

Пластикат Нева. Термопласт на основе ПВХ-смолы, пластификаторов и добавок. Применяется для изготовления неразъемных вилок, соединительных шнуров машин и приборов.

Винипласт гранулированный вистан-2 (ТУ 6-01-997-75). Композиция на основе ПВХ, стабилизатора, модификатора и др. добавок. Характеризуется повышенной химической стойкостью и прозрачностью. Применяется для изготовления тары, используемой для упаковки бензина, машинного масла, скипидара, растворителей, товаров бытовой химии.

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты:

© 2010-2024 рефераты по безопасности жизнедеятельности