Наиболее распространенный способ ионизации в так называемой индуктивно-связанной плазме. Индуктивно-связанная плазма (ИСП, ICP) образуется внутри горелки, в которой горит, обычно, аргон. Аргон, вообще говоря, инертный негорючий газ, поэтому, чтобы заставить его гореть, в него закачивают энергию, помещая горелку в индукционную катушку. Когда в плазму аргоновой горелки попадают атомы и молекулы, они моментально превращаются в ионы. Для того чтобы ввести атомы и молекулы интересующего материала в плазму их обычно растворяют в воде и распыляют в плазму в виде мельчайшей взвеси.
В индуктивно-связанной плазме ионы генерируются при атмосферном давлении, в то время как масс-спектрометр работает при давлении меньше чем 10-5 мБар. Между ИСП и МС используется интерфейс в виде “узкого горла”, с помощью которого вытягиваются ионы из плазмы и осуществляется перепад давлений. В начале развития ИСП/МС в качестве интерфейса просто использовалось вытянутое носиком отверстие диаметром всего 50-70 мкм, охлаждаемое водой. Проблема, связанная с такой конструкцией заключалась в том, что холодные пограничные слои впереди конуса способствовали генерации большого количества посторонних ионов. Эту проблему удалось преодолеть путем увеличения диаметра входного отверстия до 1 мм, что отодвигало пограничные слои и ионы напрямую входили в масс-спектрометр из плазмы. Эта методика известна как непрерывный отбор образца и, следовательно, конус называется конус образца.
Поскольку поток газа через этот конус образца намного больше, чем было ранее при использовании отверстий с меньшим диаметром, давление следует понижать путем использования дифференциальной вакуумной откачки в две или более стадий. По этой причине на пути потока газа был установлен второй конус и пространство между этим конусом и конусом образца откачивается форвакуумным насосом с высокой скоростью откачки. Поскольку существует большой перепад давлений между источником индуктивно-связанной плазмы и первой стадией откачки, ионы засасываются в в пространство интерфейса и ускоряются до сверхзвуковых скоростей.
Для того, чтобы избежать турбуленции на втором конусе, он выполняется с острыми краями для "срезания" (скимирования) ионов из сверхзвукового пучка и, следовательно, этот конус получил название "скимерный". Конструкция, состоящая из конуса образца и скимерного конуса с диаметрами около 1 мм получила название "интерфейс. Создание интерфейса означало прорыв в ИСП/МС технологии, обеспечивший более эффективную экстракцию ионов, улучшив пропускание ионов, а, следовательно, чувствительность метода, и снизив спектральные интерференции более чем на порядок по величине. Тем не менее, спектральные интерференции все еще оставались одним из главных ограничений метода элементного анализа.
Предел обнаружения метода составляет 16 фг/г. Данный метод позволяет определять не только количественный, но и качественный состав изотопов, тем самым делая возможным определение попадания изотопа в образце.
Радиационный фон регистрации ионизирующих излучений
Естественный радиационный фон - ионизирующее излучение, состоящее из космического излучения и ионизирующего излучения природных радионуклидов.
Одна из типовых задач радиометрических измерений - определение в пробах (в среде) активности радионуклидов, при этом гамма-излучение нуклидов может быть соизмеримо и даже меньше естественного фона. Радиационный фон и его основная составляющая - фоновое гамма-излучение, присутствует при регистрации всех видов излучения, причем уменьшить влияние гамма-фона на результаты измерений всегда сложнее, чем всех других составляющих радиационного фона.
Основные составляющие радиационного фона:
- низко- и высокоэнергетические компоненты космического излучения;
- излучение конструкционных материалов аппаратуры и самого детектора;
- излучение окружающей среды.
Космическое излучение. Первичное космическое излучение является потоком очень быстрых заряженных частиц (в основном протонов) с энергией до 1010-1012 МэВ. На высотах ниже 20 км космическое излучение практически полностью имеет вторичный характер. Высокоэнергетическая составляющая вторичного излучения представлена в основном заряженными частицами - мюонами ("+" и "-" мезонами с массой 207 масс электрона), с энергией порядка 100 МэВ. Низкоэнергетическое излучение состоит из электронно-позитронных пар и гамма-квантов. Кроме того, вторичное космическое излучение содержит нейтронную составляющую с широким энергетическим спектром.
Космическое излучение регистрируется детекторами как непосредственно, так и через вторичное излучение, создаваемое в окружающих детектор материалах, в том числе с образованием в них нестабильных изотопов. Доля космического излучения в общем радиационном фоне составляет в среднем 1/3.
Радиоактивные загрязнения. Источниками радиоактивного загрязнения материалов детектора и блока детектирования являются естественные радионуклиды (ЕРН) рядов урана/тория и калий-40. Последний присутствует в природном калии (0.012%, 31400 Бк/кг) и во всех материалах, содержащих калий в своем составе (стекло баллонов ФЭУ, световоды и пр.). Элементы рядов урана и тория в виде микропримесей присутствуют во всех материалах, включая материал детектора. Так, активность ЕРН в конструкционных марках свинца достигает 60 Бк/кг, в алюминии- 27 Бк/кг, и даже в плексигласе - до 0.25 Бк/кг. Доля гамма-фона, создаваемого радиоактивным загрязнением материалов детектора и датчика, также может достигать 1/3 общего радиационного фона.
Окружающая среда. Остальная часть фона определяется излучением всех внешних для блока детектирования объектов окружающей среды, включая радон и продукты его распада в воздушной среде.
Методы снижения фона. Существуют три основных метода снижения радиационного фона:
- использование радиационно-чистых материалов в конструкции датчиков;
- применение защиты от внешнего излучения;
- использование дополнительных детекторов для исключения из регистрации сигналов радиационного фона.
Использование радиационно-чистых материалов в конструкции датчиков. Конструкцию датчиков следует выполнять из плексигласа, фторопласта, электролитической меди и радиационно-чистой нержавеющей стали, для пайки применять химически чистое олово. При использовании сцинтилляционных детекторов применять ФЭУ с баллонами из безкалиевого стекла и безкалиевые световоды. В качестве светоотражающих материалов для сцинтилляторов использовать фторопласт или окись алюминия (вместо окиси магния, в которой больше микропримесей ЕРН).
Защита от внешнего излучения. Для защиты от внешнего гамма-излучения (космического и окружающей среды) требуется материал с большой плотностью и высоким атомным номером. Для этих целей обычно используется свинец, однако за счет загрязнения ЕРН поверхностная активность свинца может достигать 18 Бк/м2. С внутренней поверхности свинцового экрана на детектор может выходить характеристическое излучение свинца, которое возникает при фотопоглощении гамма-квантов, в том числе от измеряемых проб. Для поглощения данного излучения на внутренней поверхности свинцовой защиты располагают дополнительный защитный экран, как правило, из кадмия или олова (1-2 мм) и меди (0.3-0.5 мм), что позволяет ослабить возникающее характеристическое излучение более чем в 100 раз.