В настоящее время реакторы на быстрых нейтронах широкого распространения не получили, в основном из-за сложности конструкции и проблемы получения достаточно устойчивых материалов для конструкционных деталей. В России имеется только один реактор такого типа (на Белоярской АЭС). Считается, что такие реакторы имеют большое будущее.
Сравнение.
Если подводить итог, то стоит сказать следующее. Реакторы ВВЭР достаточно безопасны в эксплуатации, но требуют высокообогащенного урана. Реакторы РБМК безопасны лишь при правильной их эксплуатации и хорошо разработанных системах защиты, но зато способны использовать малообогащенное топливо или даже отработанное топливо ВВЭР-ов. Реакторы на тяжелой воде всем хороши, но уж больно дорого добывать тяжелую воду. Технология производства реакторов с шаровой засыпкой еще недостаточно хорошо разработана, хотя этот тип реакторов стоило бы признать наиболее приемлемым для широкого применения, в частности, из-за отсутствия катастрофических последствий при аварии с разгоном реактора. За реакторами на быстрых нейтронах - будущее производства топлива для ядерной энергетики, эти реакторы наиболее эффективно используют ядерное топливо, но их конструкция очень сложна и пока еще малонадежна.
Факторы опасности ядерных реакторов.
Факторы опасности ядерных реакторов достаточно многочисленны. Перечислим лишь некоторые из них.
· Возможность аварии с разгоном реактора. При этом вследствие сильнейшего тепловыделения может произойти расплавление активной зоны реактора и попадание радиоактивных веществ в окружающую среду. Если в реакторе имеется вода, то в случае такой аварии она будет разлагаться на водород и кислород, что приведет к взрыву гремучего газа в реакторе и достаточно серьезному разрушению не только реактора, но и всего энергоблока с радиоактивным заражением местности.
Аварии с разгоном реактора можно предотвратить, применив специальные технологии конструкции реакторов, систем защиты, подготовки персонала.
· Радиоактивные выбросы в окружающую среду. Их количество и характер зависит от конструкции реактора и качества его сборки и эксплуатации. У РБМК они наибольшие, у реактора с шаровой засыпкой наименьшие. Очистные сооружения могут уменьшить их.
Впрочем, у атомной станции, работающей в нормальном режиме, эти выбросы меньше, чем, скажем, у угольной станции, так как в угле тоже содержатся радиоактивные вещества, и при его сгорании они выходят в атмосферу.
· Необходимость захоронения отработавшего реактора.
На сегодняшний день эта проблема не решена, хотя есть много разработок в этой области.
· Радиоактивное облучение персонала.
Можно предотвратить или уменьшить применением соответствующих мер радиационной безопасности в процессе эксплуатации атомной станции.
Ядерный взрыв ни в одном реакторе произойти в принципе не может.
Заключение.
Атомная энергетика - активно развивающаяся отрасль. Очевидно, что ей предназначено большое будущее, так как запасы нефти, газа, угля постепенно иссякают, а уран - достаточно распространенный элемент на Земле. Но следует помнить, что атомная энергетика связана с повышенной опасностью для людей, которая, в частности, проявляется в крайне неблагоприятных последствиях аварий с разрушением атомных реакторов. В связи с этим необходимо закладывать решение проблемы безопасности (в частности, предупреждение аварий с разгоном реактора, локализацию аварии в пределах биозащиты, уменьшение радиоактивных выбросов и др.) еще в конструкцию реактора, на стадии его проектирования.
Стоит также рассматривать другие предложения по повышению безопасности объектов атомной энергетики, как то: строительство атомных электростанций под землей, отправка ядерных отходов в космическое пространство.
Целью настоящей работы было всего лишь рассказать о современной атомной энергетике, показать устройство и основные типы ядерных реакторов. К сожалению, объем доклада не позволяет более подробно остановиться на вопросах физики реактора, тонкостях конструкции отдельных типов и вытекающих из них проблем эксплуатации, надежности и безопасности.