Рефераты по БЖД

Теоретический расчет основных параметров горения и тушения пожаров газовых фонтанов

В табл. 6 приведены результаты расчетов максимальной скорости истечения импульсной струи жидкости порохового ИВ для разных зарядов пороха.

горение газ фонтан тушение

Таблица 6

Как и следовало ожидать, при уменьшении массы пороха (энергии выстрела) максимальная скорость струи и давление внутри установки уменьшались, причем давление уменьшалось гораздо быстрее,

чем скорость. Например, для порохового заряда 10 г (масса пороха в 3 раза меньше штатной) максимальная скорость истечения уменьшилась в 2,3 раза, а давление – в 6 раз. Соотношения между скоростью и давлением удовлетворительно согласуются с уравнением Бернулли для несжимаемой жидкости, согласно которому давление пропорционально квадрату скорости. Существенное уменьшение максимального давления внутри установки при незначительном уменьшении максимальной скорости струи жидкости является положительным фактором для прочностных характеристик установки: чем меньше давление в установке, тем тоньше может быть ее корпус, меньше масса и, как следствие, больше мобильность.

Специфический характер зависимости скорости истечения струи ИВ от времени (быстрое возрастание в начале истечения от нуля до максимума, а в дальнейшем спад практически до нуля), определяет закономерности распространения импульсной струи. В начале истечения более быстрые частицы вытекающей из сопла ИВ жидкости пробиваются через более медленные, вытекшие ранее. В результате в струе возникает радиальное течение, которое приводит к увеличению поперечного сечения струи. Скорость радиального течения νr можно оценить по уравнению Бернулли для избыточного давлению в струе, которое возникает при столкновении более быстрого заднего участка струи с более медленным передним, вытекшим ранее [16]. Эти оценки показывают, что скорость радиального течения пропорциональна корню квадратному из избыточного давления νr ~ √Δp ~ Δv, которое в свою очередь пропорционально квадрату разности скоростей Δv соударяющихся участков струи. Поэтому на начальной стадии истечения скорость головы струи возрастает до тех пор, пока высокоскоростные участки не достигнут головы струи. В дальнейшем скорость головы струи уменьшается из-за торможения воздухом.

Радиальное течение вызывает утолщение струи и образование вокруг нее ореола брызг, который движется со скоростью, мало отличающейся от скорости ядра струи.

Эксперименты по тушению газового факела при помощи ИВ

В экспериментах исследовалась принципиальная возможность тушения газового факела при помощи импульсной струи жидкости с большого расстояния. Было проведено 4 выстрела с расстояний 5 и 10 м для пороховых зарядов 30, 20 и 10 г. В экспериментах измерялась скорость головы импульсной струи жидкости в месте расположения факела.

Скорость головы струи измерялась при помощи бесконтактного лазерного измерителя скорости, позволяющего регистрировать скорость в интервале от 50 до 3000 м/с.

Показано, что в процессе распространения импульсная струя жидкости высокой скорости «обдирается» воздухом и вокруг нее образуется высокоскоростное облако брызг большого поперечного сечения, которое эффективно сбивает пламя газового факела на расстояниях порядка 5 – 20 м от установки.

Результаты экспериментов представлены в табл. 7. Во всех экспериментах пламя было сбито и факел потушен.

Таблица 7

Расчёт расхода воды, требуемого для прекращения горения газового фонтана

Процесс прекращения горения газовых фонтанов водой включает нескольковидов воздействия этого огнетушащего вещества. Главным из них можно считать охлаждение зоны горения. Кроме того, при использовании воды происходит разбавление зоны горения её парами, экранирование газа от факела пламени и механическое воздействие струи воды с целью его отрыва.

Согласно тепловой теории потухания прекращение горения наступает в результате понижения температуры пламени до некоторой критической величины, называемой температурой потухания Тпот. Это достигается путем увеличения интенсивности теплоотвода из зоны горения и (или) уменьшением интенсивности тепловыделения за счет снижения скорости реакции горения.

В результате введения воды в зону горения часть тепла химической реакции начинает затрачиваться на нагрев, испарение воды и нагрев образующегося пара. Учитывая высокие теплоёмкости воды и водяного пара, а также теплоту парообразования, всё это приводит к снижению температуры зоны горения. В то же время появление водяного пара уменьшает концентрацию молекул горючего и окислителя в зоне горения, т.е. приводит к ее разбавлению и снижению скорости реакции горения, а значит и тепловыделения.

В результате снижается нормальная скорость распространения пламени в газовой струе. Это приводит к нарушению устойчивости факела, что в ряде случаев сопровождается срывом пламени.

Теплоотвод от факела пламени горящего фонтана газов основном происходит за счёт лучистой составляющей. В связи с этим температура пламени определяться из разности интенсивностей выделения тепла в зоне горения qп и его отвода излучением qлуч:

Δq = qп + qлуч, (5)

Величину qлуч можно выразить через qп, обозначив её долю в тепловом балансе факела пламени как ηлуч:

Δq = qп – ηлуч qп, (6)

или

Δq = (1 – ηлуч) qп. (7)

Интенсивность теплоотвода из зоны горения, обеспечивающего охлаждение зоны горения до температуры потухания Тпот., также выразим в виде доли от qп, обозначив её ηт.

Согласно тепловой теории, адиабатическая температура потухания кинетического пламени может быть легко найдена, если известна адиабатическая температура пламени. Для углеводородных горючих Тпот, как правило, составляет около 1000оС.

Однако горение реальных газовых фонтанов является диффузионным, т.е. характеристики процесса определяются главным образом скоростью взаимной диффузии горючего и окислителя, а не скоростью химических реакций между ними. Значения энергии активации реакции горения в таких условиях фактически не играют роли. В таком случае за температуру потухания можно принять температуру горения смеси, в которой содержание горючего равно нижнему концентрационному пределу воспламенения .

Допустим, что максимальная температура факела пламени равна температуре горения смеси стехиометрического состава . Тогда количество тепла, которое необходимо отвести от пламени, будет пропорционально разности ΔТ = . Отношение ΔТ/ фактически составит величину ηт.

Перейти на страницу номер:
 1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты:

© 2010-2024 рефераты по безопасности жизнедеятельности