Пропилен — бесцветный газ; растворимость пропилена в воде составляет 0,835 мг/л при 20°С. В хронических опытах на животных пропилен вызывает аналогичную этилену картину интоксикации. ПДК установлена по влиянию на запах воды на уровне 0,5 .мг/л [14].
Содержание примесей в сточных водах
Как уже указывалось, в процессе переработки и очистки нефти в сточные воды наряду с основными нефтепродуктами попадает много соединений, присутствующих в нефти в виде примесей. Из них наибольшее гигиеническое значение имеют сернистые соединения и фенол. Сернистые соединения содержатся в больших концентрациях в отработанных сточных водах, образующихся в результате щелочной очистки бензинов, керосинов и сжиженных газов. Важнейшими из них являются сульфиды и меркаптаны.
Сернистые соединения попадают в водоемы со сточными водами НПЗ в виде свободного и связанного сероводорода (сульфиды) и продуктов их окисления. Сульфиды при поступлении в водоем диссоциируют с образованием гидросульфидных ионов HSˉ, которые носят название связанного сероводорода. Связанный и свободный сероводород в водоеме окисляются с образованием сульфат-ионов; промежуточными продуктами при этом являются сульфитные и тиосульфатные ионы. Кроме того, могут образовываться коллоидная сера, оксиды серы, тритионовые и политионовые кислоты.
Процесс окисления сернистых соединений в воде начинается с первых же минут. В присутствии избытка кислорода сероводород (свободный и связанный) окисляется полностью в течение первых суток. Промежуточные продукты окисляются значительно медленнее, так как их окисление обусловлено биохимическими процессами, протекающими в воде [17].
Установлена зависимость интенсивности окисления в водной среде сернистых соединений от концентрации растворенного кислорода, рН и температуры, а также от процессов перемешивания и наличия тионовых бактерий. Расчетная величина необходимых затрат кислорода на полное окисление сероводорода до сульфатов полностью совпадает с величиной, полученной в прямом опыте. Так, 1 мг кислорода расходуется на окисление 0,53 мг сероводорода до сульфатов или на окисление 1,09 мг сероводорода до тиосульфатов.
Особенность поведения сульфидов в водной среде обусловливает выраженное вредное влияние их на санитарный режим водоема — быстрое связывание кислорода, растворенного в воде. Сульфиды должны полностью отсутствовать в воде, а следовательно, и в сточных водах, чтобы сохранить надлежащий кислородный режим в воде водоемов. Сульфиды вредно влияют и на органолептические свойства воды, придавая ей в концентрациях 0,1—0,3 мг/л запах интенсивностью 1—2 балла.
Меркаптаны— простейшие сернистые соединения, представляют собой летучие бесцветные жидкости плотностью ниже единицы с очень резким отталкивающим запахом. Меркаптаны легко растворяются в щелочах, образуя соединения, в которых водород замещен металлом (меркаптиды); в воде растворяются плохо. Под действием слабых окислителей или воздуха меркаптаны постепенно окисляются в дисульфиды.
Применение метода определения меркаптанов в воде чувствительностью 0,001—0,002 мг/л позволило установить концентрацию меркаптана 0,001 мг/л в качестве предельной по ее влиянию на запах воды. Эта концентрация меркаптана не влияет на санитарный режим водоема и не вызывает отрицательного токсического действия на организм [17].
Фенолыв чистом виде представляют собой бесцветные кристаллические вещества. Одноатомные фенолы (оксибензол, крезолы) хорошо растворяются в воде, придавая ей резкий запах и привкус. Порог восприятия запаха фенола составляет 0,025—1,0 мг/л. При обработке воды хлором фенолы резко усиливают запах за счет образования хлорфенольных соединений. Запах хлорфенола стабилен, не обладает привыкаемостью. Эта способность фенолов и положена в основу его гигиенического нормирования в воде водоемов, используемых для хозяйственно-питьевых целей. Минимальная концентрация фенола, образующая при хлорировании запах интенсивностью 1 балл, составляет 0,001 мг/л [16].
Наряду с влиянием на органолептические свойства воды одноатомные фенолы, воздействуют и на санитарный режим водоема, потребляя на окисление кислород, растворенный в воде. Было установлено, что при длительном введении с водой одноатомных фенолов в концентрации около 800 мг/л в организме животных развивается хроническая интоксикация, проявляющаяся в дистрофическом поражении почек, печени, изменениях со стороны сердечно-сосудистой системы, центральной нервной системы и др. Эффект совместного действия двух — трех фенолов близок к сумме эффектов действия отдельных веществ.
Для водоемов рыбохозяйственного значения ПДК фенолов установлена на уровне 0,001 мг/л по влиянию на качество мяса рыбы (рыбохозяйственный признак).
При оценке возможного загрязнения окружающей среды отходами НПЗ нельзя забывать их роли как источников канцерогенов особенно в водных объектах. Содержание их в сточных водах зависит от температуры, при которых происходит возгонка сырья. Как известно, среди большой группы полициклических ароматических соединений в качестве индикатора канцерогенной загрязненности окружающей среды принимается бенз[а]пирен (3,4-бензпирен). Хотя в сточных водах НПЗ сравнительно меньше 3,4-бензпирена, чем в сточных водах других предприятий по термической переработке твердого и жидкого топлива, однако и в них обнаруживалось до 0,292 мг/л 3,4-бензпирена. Как показали исследования, 3,4-бензпирен обладает значительной стабильностью и растворимостью в водной среде, что делает возможным распространение его (и других канцерогенных углеводородов) на большие расстояния вниз по течению от источника загрязнения. 3,4-Бензпирен накапливается в донных отложениях в планктоне, водорослях, рыбных организмах [1].
Содержание диэмульгаторов в сточной воде
Как известно, основным источником загрязнения сточных вод НПЗ является процесс обезвоживания и обессоливания нефти. Решающее значение при этом имеет качество применяемых деэмульгаторов, представляющих собой поверхностно-активные вещества (ПАВ).
ПАВ — это вещества, адсорбирующиеся на поверхности раздела соприкасающихся тел и образующие на этой поверхности адсорбционный молекулярный слой. Даже очень малые добавки ПАВ могут резко изменить условия молекулярного взаимодействия на поверхности раздела, скорости фазовых превращений и перехода из одной фазы в другую. В химическом отношении ПАВ могут быть разделены на ионогенные и неионогенные; первые в свою очередь делятся на анионоактивные и катионоакивные.
Анионоактивные ионогенные ПАВ при растворении в воде диссоциируют на положительно заряженный катион и отрицательно заряженный анион. Носителем поверхностно-активных свойств у анионоактивных ПАВ является анион. Представителями анионоактивных ПАВ является алкилбензосульфонат и алкилсульфаты. К ним относятся применяемые ранее на НПЗ сульфонат (соли сульфонафтеновых кислот) и деэмульгатор НЧК (нейтрализованный черный контакт).
Катионоактивные ПАВ также диссоциируют на катионы и анионы, но поверхностно-активными свойствами обладают катионы, представляющие собой положительно заряженную группу. Отрицательными свойствами анионоактивных ПАВ (в частности, НЧК и сульфоната) является их способность реагировать с находящимися в воде солями кальция и магния и образовывать осадки, способствующие шламообразованию при деэмульгации нефти. При этом образуются стойкие эмульсии нефти, не поддающиеся ни отстаиванию, ни всплыванию. Обессоливание высокосмолистых нефтей требует больших расходов НЧК (до 3 кг на 1 т нефти). При переработке такой нефти получающиеся сточные воды не поддаются очистке на нефтеловушках и кварцевых фильтрах.