Наибольшее распространение в настоящее время приобрели спринклерные установки для тушения пожаров распылённой водой. Для этого под потолком монтируется сеть разветвлённых трубопроводов, на которых размещают сприклеры из расчёта орошения одним спринклером от 9 до 12м2 площади пола. В одной секции водяной системы должно быть не менее 800 спринклеров. Площадь пола, защищаемая одним спринклером типа СН-2, должна быть не более 9м2 в помещениях с повышенной пожарной опасностью (при количестве горючих материалов более 200кг на 1м2; в остальных случаях – не более 12м2. Выходное отверстие в спринклерной головке закрыто легкоплавким замком (72°С, 93°С, 141°С, 182°С), при расплавлении которого вода разбрызгивается, ударяясь о дефлектор. Интенсивность орошения площади составляет 0,1л/с∙м2 (рис.4.4.8).
Спринклерные сети должны находиться под давлением, способным подать 10л/с. Если при пожаре вскрылся хотя бы один спринклер, то подаётся сигнал. Контрольно-сигнальные клапаны располагаются на заметных и доступных местах, причём к одному контрольно-сигнальному клапану подключают не более 800 спринклеров.
В пожароопасных помещениях рекомендуется подавать воду сразу по всей площади помещения. В этих случаях применяют установки группового действия (дренчерные). Дренчерные – это спринклеры без плавких замков с открытыми отверстиями для воды и других составов. В обычное время выход воды в сеть закрыт клапаном группового действия. Интенсивность подачи воды 0,1л/с∙м2 и для помещений повышенной пожарной опасности (при количестве сгораемых материалов 200кг на 1м2 и более) - 0,3л/с∙м2.
Рис.4.4.8. Схема спринклерной установки.
1 – источник воды; 2 – центробежный насос; 3 – магистральный трубопровод; 4 – обратный клапан; 5 – водонапорный бак; 7 – контрольно-сигнальный клапан; 8 – удельный трубопровод; 9 – распределительный трубопровод; 10 – спринклерные головки.
Расстояние между дренчерами не должно превышать 3м, а между дренчерами и стенами или перегородками – 1,5м. Площадь пола, защищаемая одним дренчером, должна быть не более 9м2. В течение первого часа тушения пожара должно подаваться не менее 30л/с (рис.4.4.9)
Рис.4.4.9. Принципиальная схема дренчерной установки группового действия.
1 – надклапная камера; 2 – дифференцированный клапан; 3 – камера клапан группового действия; 4 – соединительная трубка; 5 – диафрагма; 6 – гайка с диафрагмой; 7 – трубка от водопитателя; 8 – автомат пуска насосов; 9 – водопоставляющий трубопровод; 10 – электросигналы; 11 – дренчер; 12 – распределительный трубопровод; 13 – дренчерная сеть; 14 – спринклер; 15 – кран ручного включения; 16 – пусковой трубопровод; 17 – активный трубопровод; 18 –активный кран; 19 – проволока; 20 – легкоплавкие замки; 21 – пружина; 22 – дренчерная головка.
Установки выявления и глушения взрывопожароопасных ситуаций
В случаях, когда значения контролируемых параметров окружающей среды или скорости их изменения указывают на высокую вероятность возникновения пожара и взрыва, можно говорить о наличие взрывопожароопасной ситуации. При этом, параметрами, которые контролируются, могут быть как концентрация горючих газов, паров и их смесей в воздухе вокруг установок (оборудования), так и появление источников возгорания в местах хранения и оборота горючих газов, жидкостей, твёрдых веществ и пыли.
Установки выявления и глушения взрывопожароопасных ситуаций в общем виде включают такие приспособления:
- выявление взрывопожароопасных ситуаций;
- коммутация и усиление сигналов;
- исполнительные приспособления защиты.
Установки позволяют осуществлять автоматическое измерение контролируемых параметров, распознавание сигналов при наличии взрывопожароопасной ситуации, преобразование и усиление этих сигналов, и выдачу команд на включение исполнительных приспособлений защиты.
Сущностью процесса прекращения взрыва является торможение химических реакций путём подачи в зону горения огнетушащих составов. Возможность прекращения взрыва обусловлена наличием некоторого промежутка времени от момента возникновения условий взрыва до его развития. Этот промежуток времени, условно названный периодом индукции (τинд), зависит от физико-химических свойств горючей смеси, а также от объёма и конфигурации защищаемого аппарата.
Для большинства горючих углеводородных смесей τинд составляет порядка 20% от общего времени взрыва.
Для того чтобы автоматическая система противовзрывной защиты отвечала своему назначению, должно выполняться следующее условие: ТАСПВ < τинд, то есть, время срабатывания защиты должно опережать время индуктивного периода.
Вероятность достижения граничных значений опасных факторов пожара или взрыва (НФП).
Согласно требований пожарной безопасности вероятность возникновения пожара или взрыва определяется по следующей зависимости:
,
где QНФП – вероятность достижения в течении года граничных значений опасных факторов пожара и взрыва (НФП), год-1;
QП – вероятность возникновения пожара или взрыва, год-1;
ρП и ρа – возможная эффективность (надёжность) профилактических и активных мер;
QнНФП – нормативная вероятность влияния НФП (принимается равной 10-6 год-1).
Значения граничных величин НФП, превышение которых не допускается с вероятностью выше нормативной, представлены в табл.4.4.7.
Под обрушением конструкций понимается разрушительные последствия при взрывах в домах, а также при превышении времени огневого воздействия предела огнестойкости конструкций.
Вероятность возникновения пожара или взрыва в течении года рассчитывается по формуле:
где QГС = QГ QО – вероятность образования горючей смеси (QГ – вероятность появления горючего вещества; QО – вероятность появления окислителя, обычно QО = 1); Q ИВ = QТ QЭ Qτ – вероятность появления источника воспламенения; (QТ – вероятность появления теплового источника; QЭ – вероятность достаточной энергии источника; Qτ – вероятность достаточности времени существования источника).
Таблица 4.4.7.
Значения граничных величин НФП
НФП |
Граничные значения |
Обвал конструкций |
Не допустимо |
Температура, °С |
70 |
Тепловые излучения, Ут/м2 |
500 |
Содержание СО,%. |
0,1 |
Содержание СО2,% |
6,0 |
Содержание ПР О2,% |
Не менеее 17,0 |
Потеря видимости, раз |
2,4 |