Рефераты по БЖД

Признаки радиолокационного распознавания противорадиолокационных ракет и их носителей

Поляризационный шум. Поляризация эхо-сигнала от сложной цели в общем случае отличается от поляризации зондирующего сигнала. Хотя поляризация зондирующего сигнала обычно преобладает в отраженном сигнале, сигнал от отражателей сложной формы и комбинации таких отражателей имеют составляющие с другими видами поляризации. Это означает, что цель со сложной конфигурацией изменяет поляризацию отраженного сигнала, вариация которого эквивалентна некоторому шуму.

Деполяризация радиолокационного сигнала при отражении его от цели вызывает некоторую потерю энергии эхо-сигнала. Измерения показывают, что при линейной поляризации эхо-сигнала преобладает такая же поляризация, как и поляризация излучаемого сигнала, а составляющая ортогональной поляризации, вызванная деполяризующими свойствами сложной цели, на 7–12 дБ ниже.

Полное описание поляризационных свойств цели дается поляризационной матрицей рассеяния, имеющий вид:

, где

di, j – комплексные коэффициенты, характеризующие амплитуду и фазу отраженного от цели сигнала при облучении ее ортогональными поляризационными компонентами электромагнитной волны и приеме отраженного сигнала в ортогональном поляризационном базисе.

Величина деполяризации и фаза кроссполяризационной составляющей сигнала, по сравнению с основной составляющей, описываются элементами d12 и d 21 матрицы.

Деполяризующие свойства целей зависят от их размеров и сложности конфигурации и могут быть существенно различными для разных классов целей.

Например, простая по форме ракета слабо деполяризует сигнал, тогда составляющая d 12 для самолета может достигать 10 дБ и более от уровня составляющей d 11. Таким образом, поляризационная матрица рассеяния может рассматриваться как поляризационный портрет цели.

Шум дальности. Относительные амплитуда и фаза эхо-сигналов от отдельных частей сложной цели и их дальность относительно РЛС влияют на положение «центра тяжести» видеоимпульса при типичном методе сопровождения целей по дальности – определение «центра тяжести» площади видеоимпульса электронным интегрированием. Случайные перемещения цели и ее элементов вызывают изменения во времени этих параметров, а также результирующей дальности. Шум, вызванный флюктуациями дальности сложной цели приводит к ошибке слежения по координате дальности.

В работе приводятся результаты измерений случайных флюктуаций дальности при измерениях по небольшому, большому самолетам и по группе самолетов, устанавливающие связь шума дальности с распределением отражательной способности целей по координате дальности. Среднеквадратическая ошибка измерения дальности с достаточной точностью равна 0,8 радиуса перемещения распределенных отражающих поверхностей цели по дальности или в типичном случае можно принять равной от 10% до 30% от протяженности цели по координате дальности: 30% – для случаев наблюдения самолетов с носа и хвоста и 10% – сбоку.

Форму спектра можно оценить с хорошим приближением, пользуясь функцией для частоты и тем же значением ширины полосы, что и при вычислении спектра углового шума

N – спектральная плотность мощности шума;

В-ширина полосы шума;

f – частота;

sang – среднеквадратичное значение углового шума.

Возможность захвата желаемой спектральной линии доплеровской следящей системой также ограничивается этим шумом. Шум дальности ограничивает точность измерения скорости, определяемой как производная от дальности во времени и может быть помехой при выборе правильной спектральной линии для слежения.

Спектральное распределение энергии и функции плотности вероятности отражают довольно точную связь шума дальности цели с ее конфигурацией или распределением отражательной способности цели по координате дальности.

Доплеровский шум. Для случая ближней радиолокации по мере сближения цели с РЛС ее угловой размер непрерывно растет. Поскольку направления на отдельные точки и относительные радиальные скорости различаются между собой и имеются нормальные случайные движения цели в полете, отраженные от различных ее участков сигналы слегка отличаются по доплеровской частоте, т.е. спектр отраженного сигнала содержит не одну доплеровскую линию, а является сплошным, с максимумом у средней доплеровской частоты, обусловленной радиальной скоростью цели. Ширина спектра отраженного сигнала растет с увеличением размеров цели.

При рассмотрении доплеровского изменения частоты сигналов, отраженных сложной целью, можно выделить доплеровские спектральные линии от вращающихся частей самолета и непрерывный доплеровский спектр, возникающий случайными отклонениями самолета в полете от заданной траектории.

Наиболее интересную информацию о доплеровском шуме дает форма спектра. Спектр доплеровских флюктуаций частоты представляет собой распределение плотности вероятности Р и показывает, в течение какого относительного времени эта частота попадает в определенный участок ширины полосы. Доплеровский спектр в типичном случае представляется функцией с пиками, симметричной относительно средней доплеровской частоты цели. При доплеровских измерениях имеют значение как положительные, так и отрицательные частоты, т. к. спектр шума эхо-сигнала от фюзеляжа самолета симметричен относительно средней частоты.

Распределение плотности вероятности Р для f можно выразить модифицированной функцией Ганкеля в виде

K0 – модифицированная функция Ганкеля;

f – частота;

sy – среднеквадратическое значение девиации фазы, обусловленной угловым шумом;

sw – среднеквадратическое значение частоты рыскания.

В работе приводится примерный расчет Р для большого самолета с размахом крыла 40 м, наблюдаемого с носа РЛС на длине волны 0,032 м, при типичной среднеквадратической скорости рыскания 0,8°/c, совершающего полет по прямой. Функция

f – рабочая частота передачика РЛС;

fd – средняя доплеровская частота от корпуса самолета

Необходимо отметить, что любое постоянное значение скорости виража или изменения ракурса приводит к расширению доплеровского спектра и изменению его формы, выражающееся в менее резком спадении функции Р вблизи ее максимума, а также к дополнительному сдвигу всего спектра в виду изменения средней радиальной скорости.

Составляющие эхо-сигнала от вращающихся и колеблющихся элементов самолета вызывают появление не только амплитудной модуляции с парами спектральных линий, расположенных симметрично относительно доплеровского спектра эхо-сигнала от фюзеляжа самолета, но и чистую частотную модуляцию, создающую отдельную группу доплеровских линий, расположенных по одну сторону от доплеровского спектра корпуса самолета.

Приведенный примерный доплеровский «портрет» самолета характерен наличием в спектре составляющих, вызванных «вторичным» эффектом Доплера, регулярных составляющих, связанных с турбинной или винтовой модуляции и случайных составляющих, обусловленных вибрациями и рысканием цели. Наиболее информативной является составляющая турбинного эффекта, частота которой зависит от конструкции и скорости вращения компрессора двигателя. Уровень турбинной составляющей лежит на 15–20 дБ ниже основной составляющей.

Перейти на страницу номер:
 1  2  3  4  5  6  7  8 


Другие рефераты:

© 2010-2024 рефераты по безопасности жизнедеятельности